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Abstract

Four different data sets pertaining to the neutral atom environment at 1 AU are presented and discussed. These data sets include

neutral solar wind and interstellar neutral atom data from IMAGE/LENA, low energy neutral atom, energetic hydrogen atom data

from SOHO/HSTOF and plasma wave data from the magnetometer on ISEE-3. Surprisingly, these data sets are centered between

262� and 292� ecliptic longitude, �10–40� from the upstream interstellar neutral (ISN) flow direction at 254� resulting from the

motion of the Sun relative to the local interstellar cloud (LIC). Some possible explanations for this offset, none of which is com-

pletely satisfactory, are discussed.

� 2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Due to the motion of the heliosphere at about 25 km/s

through the local interstellar cloud (LIC), the Earth pas-

ses upstream of the Sun in the main neutral gas flow in

early June of every year, about June 5 (day 156) when it is
near 254� ecliptic longitude (Frisch, 2000). Several inde-
pendent observations for bothHandHe including pickup

ions (Gloeckler and Geiss, 2001), direct neutral gas ob-

servations (Witte et al., 1993), and UV backscattering

(Lallement, 1996) have established this direction along

with the resulting spatial distribution and kinematics of

the particles. In addition, the derived flow is consistent

with UV absorption measurements in the light of nearby
stars (Bertin et al., 1993).
U
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The presence of this well-established stream leads to

the expectation that neutral atom data at 1 AU would

be symmetric with respect to the 74�/254� ecliptic lon-

gitude axis. However, a number of neutral atom data

sets at 1 AU, four of which are discussed here, curiously

are not centered with this axis, but with larger ecliptic
longitudes by about 10–40�, depending on the data set in

question.
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2. Interstellar neutral (ISN) observations

Fuselier predicted prior to the IMAGE launch in

March of 2000, based in part on earlier unpublished
work by Gruntman, that the Low Energy Neutral Atom

(LENA) imager, which responds to neutral atoms down

to as low as about 10 eV (Moore et al., 2000), would be

able to directly observe ISN helium early in each cal-

endar year. As shown in Fig. 1, LENA did observe a
ved.

mail to: mcollier@pop600.gsfc.nasa.gov
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Fig. 2. ISN count rate versus day of year.

Fig. 3. HSTOF/EHA and LENA/NSW data.

Fig. 1. LENA spectogram Showing ISN signal.
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signal in the Winter of 2000/2001 which, because it oc-
curred at the predicted time of year and from the pre-

dicted direction, close to the Earth ram direction, was

interpreted as due to ISN.

Because the upstream direction, 254�, lies outside of

LENAs field-of-view, for ISN to be observed directly by

LENA they must be appreciably bent by the Sun’s

gravity downwind of the Sun, making it unlikely that

this signal is ISN hydrogen which is strongly influenced
by solar radiation pressure. Consequently, signal is

probably helium, although LENA does respond to all

species of neutrals over a wide energy range. The peak

ISN flux is expected when the Earth is directly down-

stream, on December 5. However, because the LENA

efficiencies are a strong function of energy and the ex-

pected velocity of heavy ISN with respect to IMAGE

exhibits a broad peak starting in mid-December, the
maximum in the observed neutral count rate should

occur somewhere around December 15. So, following

the appearance of this signal, two groups on the LENA

team independently used different techniques to extract

the signal and track its rate versus time. The two groups

reached the same conclusion, namely that the peak

count rate of the neutrals occurred about forty days

later than December 5, in early January, as shown in
Fig. 2. Thus, if of ISN origin, these observations do not

seem to come from the same population of neutrals

observed by the Ulysses Neutral GAS experiment (Witte

et al., 1992), through UV backscattering (Chassefi�ere
et al., 1986; Vallerga, 1996) and through pickup ions

(M€obius et al., 1985; Gloeckler and Geiss, 2001).
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N3. Neutral solar wind (NSW) observations

Fig. 3 shows the annual variation of the neutral solar

wind flux, which forms when solar wind ions exchange

charge with neutral atoms between the Sun and the

Earth (Collier et al., 2001), observed by LENA over the

year 2001 (dashed line). There is a clear enhancement of
about one and one half orders of magnitude in the data

occurring between about day 120 and day 250, although
the Sun, and hence the solar wind, is outside of LENA’s

field-of-view from about day 144 to day 230. When the

center of the enhancement is inferred from the rise and

fall, its location is estimated to be on day 184.

The highest measured neutral solar wind flux is

�0.2% of the nominal solar wind flux, although the

upward trend may suggest a higher peak rate. The flux is

based on the assumption that LENA responds to hy-
drogen with an energy of 1 keV. However, the average

solar wind energy is higher than 1 keV and LENAs ef-

ficiency may be higher at the higher energies. Further-

more, LENA may be responding in-part to

suprathermal particles or heavy atoms, which also will

have higher efficiencies. Considering this and
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uncertainties in calibration, the observed neutral solar

wind flux could be lower than that shown in Fig. 3 by

about a factor of four or five. Because IMAGE, except

under infrequent extreme conditions, is in the magne-

tosphere, there are no solar wind ions to suppress.

The neutral solar wind fluxes outside of the period of
enhancement have been interpreted as neutrals gener-

ated by the solar wind interaction with interplanetary

dust and the Earth’s hydrogen exosphere (Collier et al.,

2002). The third main source of neutrals for solar wind

charge exchange, interstellar hydrogen, which has a

higher density and will charge exchange more readily

with protons than neutral helium will (Gruntman, 1994),

is expected to have an annual periodicity due to the
Earth’s motion around the Sun. Furthermore, unlike

helium, hydrogen is relatively unaffected by solar grav-

ity, being partially if not entirely balanced by radiation

pressure, so that, the highest hydrogen densities are

found in the upstream, rather than downstream, region.

Recent evidence with SOHO/SWAN indicates a rather

high photon pressure with l, the ratio of the radiation to

gravitational force, approaching one even during solar
minimum (Qu�emerais et al., 1999).

Fig. 6 of Bzowski et al. (1996) shows a model pre-

diction for the annual variation of the neutral solar wind

flux at 1 AU over a solar cycle. Qualitatively, the model

predicts a variation between one and three orders of

magnitude in the upstream direction, consistent with the

LENA observations and prompting an interpretation

linking the LENA enhancement with interstellar hy-
drogen. However, the observed fluxes are over an order

of magnitude greater than the predicted fluxes, which

are close to 104 atoms/cm2/s, and occur-about thirty

days (or approximately 30�) later than the nominal ISN

flow direction.
Fig. 4. Tsurutani events and ISN data (shifted 6 months).
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4. Energetic hydrogen atom observations

Fig. 3 also shows energetic hydrogen atom data (solid

line) from the High Energy Suprathermal Time-of-

Flight (HSTOF) sensor on SOHO published by

Hilchenbach et al. (1998) (data from their Fig. 6(a)).

They examined quiet day fluxes of hydrogen atoms with

energies between 55 and 80 keV and interpret these

fluxes as corning from the heliosheath. K�ota et al. (2001)
have argued that the HSTOF ENA observations are

also consistent with an energetic ion population source

accelerated at CIRs in the inner heliosphere.

Like the LENA neutral solar wind observations.

HSTOF is looking back towards the Sun and, like

LENA. HSTOF sees an enhancement in energetic neu-

trals between about day 120 and 250. However, unlike

LENA. HSTOF is not looking directly back at the Sun,
but 37� off the Sun–Earth line. When the data are

plotted as a function of the actual ecliptic longitude
OF

HSTOF observes (see Hilchenbach et al., Fig. 6(b)),

there is a substantial shift, about 15�, between the peak

flux and the nominal upstream/downstream axis, al-

though the statistical uncertainties are relatively large.

This shift is apparent in the HSTOF long term trending

data shown in Fig. 18 of Czechowski et al. (2001) as
well. However, the fluxes HSTOF observes are higher by

an order of magnitude than can be accounted for by the

models considered by Czechowski et al. Certainly an

additional source of neutral gas, such as might be sup-

plied by a secondary stream, would bring model and

observations into closer agreement.
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5. Wave observations

Tsurutani et al. (1994) reported low frequency waves

with periods near the proton gyroperiod at 1 AU ob-

served by the magnetometer on ISEE-3. The events are

unusual because the interplanetary magnetic field power

spectrum at 1 AU is typically quite featureless, exhibit-

ing a relatively smooth Kolmogorov m�5=3 dependence.
However, during these events (see their Fig. 3), Tsuru-

tani et al. saw broad increases in the wave power near

the proton cyclotron frequency, atypical in the normal

solar wind.

Tsurutani et al. considered pickup of cold hydrogen

neutrals as the most likely source of the waves and list

interstellar neutrals as a possible candidate. The dates of

their events are distributed over a three year period from
1978–1981 (see their Table 1). However, the day of year

of these events falls into two clusters, as shown at the

top of Fig. 4, which appear to be centered not with the

upstream direction, but about thirty degrees later.
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In the event these wave observations are associated

with elevated neutral fluxes centered at an ecliptic lon-

gitude somewhere between 262� and 292�, then a natural

question is why would this wave activity only occur in

the regions of the neutral atom gradients. One possible

explanation is that it results from Earth crossings of the
parabolic exclusion boundary (Holzer, 1977). For values

of l > 1, hydrogen is unable to penetrate to the Sun and

the fobidden region forms a parabolic boundary, which,

in analogy to the magnetosheath, has an associated

hydrogen sheath of substantially increased density. For

a static boundary and reasonable values of l, the Earth
will traverse this sheath twice annually in the upstream

direction (see Holzer, 1977, Fig. 4(b)). However, the
boundary is likely irregular and in near constant mo-

tion, causing multiple traversals and bursty activity

during the appropriate times of year, as observed in

Tsurutani et al.’s events. In fact, examining Tsurutani

et al.’s wave events, they do resemble, in the sense of

having multiple closely-spaced events, the traversals of

boundaries such as the magnetopause and bow shock.

Of course, if the secondary stream population is very
hot, only those particles in the distribution with energies

high enough to effectively penetrate to 1 AU while low

enough to form a parabolic exclusion boundary near

1 AU would be producing these waves. Note also that

Holzer uses a value l ¼ 1:2, whereas l may be sub-

stantially larger leading to higher energy particles

forming the same parabolic exclusion boundary.
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6. Discussion and conclusions

Fig. 5 shows all four of the data sets discussed in this

paper on a single plot. The data have a symmetry point

substantially later than expected based on the nominal

upstream direction but appear to be consistent with a
U
N
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Fig. 5. Four data sets discussed here (ISN data shifted 6 months).
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direction very close to the Galactic center at 267�. One

possibility is that this may be due to a secondary stream

of neutrals which enters the heliosphere at an ecliptic

longitude somewhere between 262� and 292�. The wave

data and the downstream directly observed neutral data

suggest a lower energy component while the neutral
solar wind and perhaps the HSTOF data favor a com-

ponent at higher energies which can penetrate well inside

of 1 AU. This implies that should this secondary stream

exist, it likely contains a wide range of neutral speeds,

that is, it is very hot.

A natural question is what would cause such a stream

and the answer is unclear at best, although there are a

couple other relevant issues that should be mentioned.
First, it is interesting to note that the apparent direction

of the interstellar dust flow is shifted about 10� later in
ecliptic longitude than the direction of the interstellar

neutral flow (Gr€un, 2000), although they are consistent

to within a 1r uncertainty. The dust distribution, how-

ever, is sufficiently broad so that it is also consistent with

a wide range of flow directions. Because dust can serve

as a source of neutrals for charge exchange (Banks,
1971), there may be some relationship between the in-

terstellar dust flow and this possible secondary stream.

Second, if the heliosphere is tilted due to the incli-

nation of an interstellar magnetic field, as suggested by

some simulations (Ratkiewicz et al., 1998) and illus-

trated in Fig. 6, then perhaps the shift in the data sets

presented here is the result of this asymmetry.

Third, Lallement (private communication, 2002) has
pointed out that evidence suggests that the heliosphere is

extremely close to the boundary of the LIC in the ap-

proximate direction of the Galactic center, albeit with a

huge uncertainty (Lallement, 1996; Lallement and

Bertin, 1992). If the next cloud in that direction, the G

cloud (Linsky and Wood, 1996), has not already caught

up to the LIC (Lallement et al., 1990), between the LIC
Fig. 6. Angled IS B-field producing heliospheric tilt.
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and the G cloud resides a hot ionized gas of temperature

�106 K, which corresponds to 150 km/s for protons. If

the interface with this hot gas is close (we have only

upper limits (Redfield and Linsky, 2000)), then, because

of charge exchange between hydrogen and protons, hot

neutral H with characteristic speeds of about 150 km/s,
perhaps higher, will penetrate the heliosphere from the

approximate direction of the Galactic center because of

our proximity to the interface. In this scenario, because

the distribution is so hot, some flux of energetic neutrals

(>1) keV may be observed flowing towards the Sun

when the Earth is between the Sun and the Galactic

center.

Fourth, the role of the Earth in influencing 1 AU
observations of extraterrestrial neutrals may not be fully

appreciated. As just one example, because lower energy

particles in the interstellar neutral distribution are

preferentially filtered out. the remnant population at

1 AU will have a higher effective speed. The Earth

moves at vE ¼ 30 km/s. Thus, if the interstellar neutrals

flow at VISN and the Earth is at an angles

sin�1 VE=VISNf g with respect to the upstream direction,
then the interstellar neutrals will flow exactly along the

Sun–Earth line in the frame of the Earth. Consequently,

the axis of the focusing cone created by the Earth’s

gravity will be aligned with the solar wind and will

produce strong neutral density enhancements along an

extended solar wind path length.

Fifth, a closer look at the spatial distribution of

pickup ions appears to be warranted (Gloeckler and
Geiss, 2001), with a shorter averaging window as used,

for example, by M€obius et al. (2002). This treatment

appears to reveal evidence of primary and secondary

streams during the period of the IMAGE data sets

(2000–2001). However, it must be borne in mind that the

spectral form of the pickup ions resultant from a fast

and/or warm secondary stream may not have the same

form as that which results from cold ISN photoioniza-
tion. The spectral form that is a cut-off at two times the

solar wind velocity results from pickup of neutrals

travelling slowly with respect to the solar wind.

In summary, multiple data sets exhibit a spatial

structure that is aligned with a direction between 10�
and 40� from the nominal upwind direction of the in-

terstellar flow. This structure may possibly be explained

in terms of a secondary stream. It remains to be fully
understood, however, how these data fit in with previous

measurements of neutral atoms, pickup ions and UV

spectra within the heliosphere and whether or not this

interpretation is consistent with these observations.
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