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COMETARY FORMATION

Molecular nitrogen in comet
67P/Churyumov-Gerasimenko indicates
a low formation temperature
M. Rubin,1* K. Altwegg,1,2 H. Balsiger,1 A. Bar-Nun,3 J.-J. Berthelier,4 A. Bieler,1,5

P. Bochsler,1 C. Briois,6 U. Calmonte,1 M. Combi,5 J. De Keyser,7 F. Dhooghe,7

P. Eberhardt,1† B. Fiethe,8 S. A. Fuselier,9 S. Gasc,1 T. I. Gombosi,5 K. C. Hansen,5

M. Hässig,1,9 A. Jäckel,1 E. Kopp,1 A. Korth,10 L. Le Roy,2 U. Mall,10 B. Marty,11

O. Mousis,12 T. Owen,13 H. Rème,14,15 T. Sémon,1 C.-Y. Tzou,1 J. H. Waite,9 P. Wurz1

Molecular nitrogen (N2) is thought to have been the most abundant form of nitrogen in
the protosolar nebula. It is the main N-bearing molecule in the atmospheres of Pluto
and Triton and probably the main nitrogen reservoir from which the giant planets
formed. Yet in comets, often considered the most primitive bodies in the solar system,
N2 has not been detected. Here we report the direct in situ measurement of N2 in the
Jupiter family comet 67P/Churyumov-Gerasimenko, made by the Rosetta Orbiter
Spectrometer for Ion and Neutral Analysis mass spectrometer aboard the Rosetta
spacecraft. A N2/CO ratio of (5.70 +− 0.66) × 10−3 (2s standard deviation of the
sampled mean) corresponds to depletion by a factor of ~25.4 +− 8.9 as compared to
the protosolar value. This depletion suggests that cometary grains formed at
low-temperature conditions below ~30 kelvin.

T
hermochemical models of the protosolar
nebula (PSN) suggest that molecular nitro-
gen (N2) was the principal nitrogen species
during the disk phase (1) and that the ni-
trogen present in the giant planets was

accreted in this form (2). Moreover, Pluto and
Triton, which are both expected to have formed
in the same region of the PSN as Jupiter family
comets (JFCs), have N2-dominated atmospheres

and surface deposits of N2 ice (3, 4). This mol-
ecule has never been firmly detected in comets;
however, CN, HCN, NH, NH2, and NH3 among
others have been observed spectroscopically (5, 6).
The abundance of N2 in comets is therefore a
key to understanding the conditions in which
they formed.
Condensation or trapping of N2 in ice occurs

at similar thermodynamic conditions as those
needed for CO in the PSN (7, 8). This requires
very low PSN temperatures and implies that
the detection of N2 in comets and its abundance
ratio with respect to CO would put strong con-
straints on comet formation conditions (7, 8).
Ground-based spectroscopic observations of
the N2

+ band in the near ultraviolet are very
difficult because of the presence of telluric N2

+

and other cometary emission lines. Searches
conducted with high-resolution spectra of com-
ets 122P/de Vico, C/1995 O1 (Hale-Bopp), and
153P/2002 C1 (Ikeya-Zhang) have been unsuc-
cessful and yielded upper limits of 10−5 to 10−4

for the N2
+/CO+ ratio (9, 10). Only one N2

+ de-
tection in C/2002 VQ94 (LINEAR) from ground-
based observations is convincing, because the
comet was at sufficient distance from the Sun
to prevent terrestrial twilight N2

+ contamina-
tion (11). The in situ measurements made by
Giotto in 1P/Halley were inconclusive, because
the resolution of the mass spectrometers aboard
the spacecraft (12) was insufficient to separate
the nearly identical masses of N2 and CO during
the 1P/Halley encounter, and only an upper limit
could be derived for the relative production
rates [Q(N2)/Q(CO) ≤ 0.1] (13).
Here we report the direct in situ measurement

of the N2/CO ratio by the Rosetta Orbiter Spec-
trometer for Ion and Neutral Analysis (ROSINA)
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in the JFC 67P/Churyumov-Gerasimenko (hereafter
67P). ROSINA is the mass spectrometer suite on
the European Space Agency's Rosetta spacecraft
(14) and measures the gas density and compo-
sition at the location of the spacecraft (15). The
Double Focusing Mass Spectrometer (DFMS) has
a high mass resolution of m/Dm about 3000 at
the 1% level (corresponding to ~9000 half peak
width at the 50% level) at atomic mass per unit
of charge 28 u/e, allowing the separation of N2

from CO (Dm = 0.011 u) by numerical peak fit-
ting. Neutral gas is ionized by electron impact
and then deflected through an electrostatic, then
magnetic, filter onto a position-sensitive micro-
channel plate (MCP) detector. The peak shape of
a single species on the MCP is well known, and
therefore numerical fitting can distinguish over-
lapping contributions from different atoms and
molecules (see the supplementary materials).
Starting on 5 August 2014, ROSINA observed

the cometary gas flux rise above the spacecraft
background signal for the major species, including
H2O, CO, and CO2. For N2, which has a higher
relative spacecraft background, the cometary sig-
nal became apparent a few days later. The space-
craft background signal (16) for both species, CO
and N2, was derived at different times before
detecting the coma and shown to be temporally
quite stable. N2 and CO were both observed in
the Rosetta spacecraft background mass spectra,
e.g., on 11 May 2014, while the spacecraft was
still at a distance of 1.65 × 106 km from the comet
(Fig. 1A). A comparable N2 background was mea-
sured on 1 August 2014, at almost 800 km from
the nucleus before the cometary signal became
apparent. Another mass spectrum, representative
of the measurements within a distance of 10 km
from the nucleus, was obtained on 18 October 2014
(Fig. 1B) and includes both cometary and space-
craft background signal. The indicated background
was subsequently removed, leaving only com-

etary CO and N2. Furthermore, CO from disso-
ciative electron-impact ionization of cometary
CO2 inside DFMS’ ion source was removed (a 7
to 36% reduction), and the signal was corrected
for the instrument alignment with respect to the
comet (supplementary materials).

This procedure was carried out for 138 spec-
tra over two terminator orbits of the Rosetta
spacecraft from 17 to 23 October 2014. Clear di-
urnal variations in the cometary signal of both
species associated with the 12.4-hour rotation pe-
riod of the comet have been observed (Fig. 2A).
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The signal is to first order correlated to the comet’s
cross-section exposed to the Sun and the rela-
tive position of Rosetta (Fig. 2, B to D). The re-
sulting mean N2/CO ratio of ð5:70 T 0:66Þ�10−3

in the observed time period corresponds to the
mean ratio of each individual measurement and
includes the 2s SD of the sampled mean. Higher
outgassing is found at positive latitudes corre-
sponding to the summer hemisphere. Over the
sunlit hemisphere, the CO/H2O ratio varies be-
tween 0.1 to 0.3 (17), which is in agreement with
variations observed at other comets (6). Be-
cause these measurements were achieved at a
heliocentric distance of 3.1 astronomical units
(AU), the water production rate may increase
relative to both CO and N2 as the comet ap-
proaches the Sun.We therefore expect theN2/CO
ratio to be more representative of the N2

content in the coma than the N2/H2O ratio.
The N2/CO ratio exhibits a strong variation
depending on the position of Rosetta above the
surface of the comet nucleus between 0.17 to
1.6% (Fig. 3). There are also hints of a nonlinear
relationship between N2 and CO, further indi-
cating that thermal processes in the upper
layer of the nucleus and/or surface inhomoge-
neities might influence the measured N2/CO
ratio in the coma.
With a protosolar ratio N/C of 0.29 T 0.10 (18)

and assuming to first order that all of N and C
were in the form of N2 and CO in the PSN (1),
we derived an N2/CO ratio of 0.145 T 0.048 in the
PSN gas phase. The comparison with the N2/CO
measurement performed in the near coma of 67P
shows that the cometary N2/CO ratio is depleted
by a factor of about 25.4 T 8.9 as compared to
the value derived from protosolar N and C abun-

dances. This depletion of N2 relative to CO in
comet 67P may be a consequence of how com-
etary ice formed. According to one model, comets
agglomerated from pristine amorphous water
ice grains originating from the interstellar me-
dium (ISM) (19). In this case, the low N2/CO
ratio in 67P is the result of inefficient trapping
of N2 in amorphous water ice as compared to
CO. This possibility is supported by laboratory
experiments in which a mixture of water vapor
with N2 and CO was directed onto a cold plate
in the 24 to 30 K temperature range (7). In these
experiments, gases initially trapped in growing
amorphous ice were later released when ice
warmed up, and the evolved gases were mea-
sured by mass spectrometry. At 24 K, the de-
pletion factor for the N2/CO ratio was found to
be ~19, a value within the range of the one ob-
served in 67P of 25.4 T 8.9. This yields a lower
limit for the temperature experienced by the
grains agglomerated by 67P, because the N2/CO
ratio in amorphous ice would increase at temper-
atures lower than 24 K because of increasing
efficiency of N2 trapping.
An alternative interpretation of the low N2

abundance is that 67P agglomerated from grains
consisting of clathrates, which are icelike crys-
talline solids formed by cages of water molecules
that contain small nonpolar molecules (20). This
hypothesis is based on models showing that the
vaporization distance of ISM ices could have
been as high as about 30 AU from the Sun when
they entered the PSN (21). With time, the decrease
of the gas temperature and pressure allowed
water to condense at ~140 to 150 K in the form
of crystalline ice, leaving negligible water in the
gas phase to condense at low temperatures where

amorphous ice is expected to form (22). De-
pending on the nature of the entrapped species,
clathrates formed from preexisting crystalline
water ice when the PSN temperature was lower
than about 80 K, provided that the slow ki-
netics of the process was balanced by sufficient
formation time (8). As in the case of trapping in
amorphous ice, experiments and models sug-
gest that N2 is poorly trapped in clathrate cages,
because of its small size (8, 23–25). In particular,
statistical thermodynamics models (26) used
to compute the composition of clathrates formed
from a protosolar-composition gas in the PSN
show that an N2/CO ratio in the comet’s nu-
cleus is consistent with the measured value in
the coma if the nucleus agglomerated from
grains formed in the 26 to 56 K temperature
range (8).
Both interpretations are consistent with the

idea that 67P agglomerated from grains formed
at about 30 K or below. However, the measured
N2/CO ratio may reflect in whole or in part the
comet’s post-formation evolution. A possibility
is that 67P agglomerated from grains formed at
a lower temperature (around 20 K) in the PSN,
favoring the trapping of much more N2 in its
building blocks, in a way consistent with the
known compositions of the atmospheres and
surfaces of Pluto and Triton (3, 4). This possibil-
ity would be consistent with an inferred Kuiper
Belt origin for 67P and its high D/H ratio (27).
In these conditions, 67P could have been initially
N2-rich but subsequent post-accretion heating
due to the radiogenic decay of nuclides and/or
thermal cycles during its transit from the Kuiper
Belt and its subsequent history in a short period
orbit could have been sufficient to trigger the
outgassing of N2 (8). A scenario such as this may
explain how initial nitrogen-rich cometesimals
similar to Triton and Pluto evolved into nitrogen-
depleted comets.
Because N2 trapped in 67P is presumably PSN

gas, its 14N/15N ratio should be about 441, the
value found in Jupiter and the solar wind (28).
This is much higher than values measured in
other cometary N-bearing species such as NH3

and HCN (~130) (5). Thus, depending on the
proportions of N2 relative to other N-bearing
species, the terrestrial 14N/15N ratio of 272 could
possibly be cometary in origin, given an appro-
priate mix of the different nitrogen species in the
comets that contributed to terrestrial volatiles
(e.g., ~50% N2 and ~50% NH3 or HCN). Our initial
ROSINA measurement for N2/CO of 0.57% may
be compared with NH3/CO of 6% and HCN/CO
of ~2% in the Oort cloud comet Hale-Bopp (6).
The production rates of volatiles relative to water
vary from one comet to another, but their values
normalized to CO remain close to those measured
in Hale-Bopp (6). If 67P is a typical JFC, then the
ROSINA value for N2/CO implies that the amount
of N2 reaching the surface of a solid body in the
inner solar system from a JFC impact was almost
15 times less than the amounts of NH3, HCN, and
certain organic compounds (6). This comparison
suggests that JFC comets were not the main
source of Earth’s nitrogen.
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HUMAN GENETICS

Common variants spanning PLK4
are associated with mitotic-origin
aneuploidy in human embryos
Rajiv C. McCoy,1 Zachary Demko,2 Allison Ryan,2 Milena Banjevic,2 Matthew Hill,2

Styrmir Sigurjonsson,2 Matthew Rabinowitz,2 Hunter B. Fraser,1 Dmitri A. Petrov1

Aneuploidy, the inheritance of an atypical chromosome complement, is common in
early human development and is the primary cause of pregnancy loss. By screening
day-3 embryos during in vitro fertilization cycles, we identified an association between
aneuploidy of putative mitotic origin and linked genetic variants on chromosome 4 of
maternal genomes. This associated region contains a candidate gene, Polo-like kinase
4 (PLK4), that plays a well-characterized role in centriole duplication and has the ability
to alter mitotic fidelity upon minor dysregulation. Mothers with the high-risk genotypes
contributed fewer embryos for testing at day 5, suggesting that their embryos are less
likely to survive to blastocyst formation. The associated region coincides with a signature
of a selective sweep in ancient humans, suggesting that the causal variant was either the
target of selection or hitchhiked to substantial frequency.

D
eviation from a balanced chromosome
complement, a phenomenon known as
aneuploidy, is common in early human
embryos and often leads to embryonic
mortality (1). Approximately 75% of em-

bryos are at least partially aneuploid by day 3
because of prevalent errors of both meiotic and
postzygotic origin (2, 3), and this proportion in-
creases with maternal age (1). The propensity to
produce aneuploid embryos varies substantially,
however, even among mothers of a similar age
(4). We therefore hypothesized that variation in
parents’ genomes may explain variation in aneu-
ploidy incidence. We tested this hypothesis by
performing a genome-wide association study of
aneuploidy risk among patients undergoing pre-
implantation genetic screening (PGS) of embryos
collected from in vitro fertilization (IVF) cycles.
Embryo DNA (single-cell day-3 blastomere

biopsies or multicell day-5 trophectoderm biop-
sies) and parent DNAwere genotyped on a single-
nucleotide polymorphism (SNP) microarray (5).
The Parental Support algorithm (6) was then ap-
plied to determine the chromosome-level ploidy
status of each embryo sample. This algorithm
overcomes high rates of allelic dropout and other
quality limitations of whole-genome amplification
by supplementing these data with high-quality
genotypes fromparental chromosomes. The copy
number of each embryonic chromosome can then
be inferred by comparing microarray channel
intensities fromDNA amplified from the embryo
biopsy to those expected given the parental geno-
types at each marker. Combining these fine-scale
observations across large chromosomal windows
facilitates the detection of particular forms of
aneuploidy and the assignment of copy number
variations to specific parental homologs (6).

Previous validation has been performed for
individual blastomeres (6), so it is unknown how
accuracywould be affected in the face of chromo-
somal mosaicism that could potentially affect
multicell trophectoderm biopsies. We therefore
performed an association study on 2362 unre-
lated mothers (1956 IVF patients and 406 oocyte
donors) and 2360 unrelated fathers meeting geno-
type quality-control thresholds (5) and fromwhom
at least one day-3 biopsy was obtained, with the
blastomere providing a high-confidence result (a
total of 20,798 blastomeres). We then separately
analyzed the additional 15,388 trophectoderm
biopsies to gain insight into selection occurring
before this developmental stage.
We first tested for associations between the

rates of errors of putative maternal meiotic or-
igin (fig. S1) (5) and maternal genotypes, identi-
fying no association achieving genome-wide
significance (logistic GLM, P-value threshold =
5 × 10−8). We next tested for associations be-
tween the rates of errors of putative mitotic or-
igin and parental genotypes. The first mitotic
divisions of the developing embryo take place
under the control of maternal gene products pro-
vided to the oocyte (7) and are substantially
error-prone (2, 3). We hypothesized that varia-
tion in maternal gene products may thus con-
tribute to variation in rates of postzygotic error
among embryos from different mothers. To en-
code the mitotic error phenotype, we designated
all blastomeres with aneuploidies affecting a
paternal chromosome copy (excluding paternal
trisomies of putativemeiotic origin) as cases, and
all other blastomere samples as controls (Fig. 1A).
Because aneuploidy has been estimated to affect
fewer than 5% of sperm (8) and because paternal
meiotic trisomies were detected for fewer than
1% of the blastomeres in our data, this set of
aneuploid cases should be nearly exclusively
mitotic in origin.
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