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Abstract. The transport parameters of suprathermal and energetic particles in

the heliosphere are intimately linked to the properties of the plasma turbu-

lence in the supersonic solar wind flow and in the subsonic heliosheath plasma

flow beyond the termination shock. Based on observations with the magne-

tometers on board the Helios, ACE, Ulysses, and Voyager spacecraft, and on

theoretical calculations, the quantitative evolution of transport parameters of

suprathermal particles over heliocentric distances is estimated. From these

transport parameters, the stochastic acceleration efficiencies and spatial pres-

sure profiles of suprathermal ions in the solar wind termination region are de-

rived. The scattering mean free path in the heliosheath plasma also yields the

injection threshold speed and characteristic time-scales for first-order Fermi

acceleration of ions at the termination shock. The theoretical results are

compared to observations of suprathermal ions, i.e. the termination shock

energetic particles (TSPs) and the Anomalous Cosmic Rays (ACRs), with

the Voyager spacecraft in the outer heliosphere, and with data on energetic

neutral atoms (ENAs) detected with the CELIAS/HSTOF sensor onboard

SOHO and with the ASPERA-3 sensor onboard Mars Express.

7.1 Introduction

The transport of suprathermal charged particles in the magnetized solar wind
plasma is qualitatively described by convection, drift, adiabatic deceleration in the
expanding solar wind, and by diffusion. The process of diffusion is subdivided into
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spatial diffusion and diffusion in momentum space. The basis for a quantitative
description of the transport is given by the Parker equation, which may be written
in the form
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or in other variations. The velocity V is the convection velocity of the bulk plasma
in some reference frame such as the spacecraft frame, the tensor K describes the
spatial diffusion, the parameter Dvv the diffusion of a nearly isotropic charged
particle distribution in velocity space, and Q and S are source and sink terms
such as the creation of ions in the plasma by ionization of neutrals or the reverse
process, respectively. The term (∇ · V) v∂vf/3 describes the adiabatic deceleration
(acceleration) in an expanding (converging) plasma flow. The velocity VD describes
the drift of the suprathermal particles such as magnetic-field gradient or curvature
drift. Parker’s equation has been developed for theories on cosmic ray transport.
It applies for a minority population of particles which are not “members” of the
thermal distribution of the bulk plasma. The equation also applies to some extent
to particles which are only slightly suprathermal, although the approach breaks
down at some lowest energy. Equation (7.1) is usually written in the solar wind
rest frame in order to have a nearly isotropic particle distribution in the bulk plasma
frame even for the lowest-energy suprathermal particles such as pick-up ions.

The transport parameters K and Dvv of suprathermal ions are usually described
in the frame of the quasi-linear theory (QLT), a theory based on the original work
by Jokipii (1966). A recent study by Bamert et al. (2004) suggests that the parallel

mean free path described by the QLT, λ‖ = 3v2/
[

8πΩ2
pP̃ (k)

]

, describes fairly well

the propagation of energetic protons with speed v and angular gyro-frequency Ωp in
the solar wind plasma, if only the Alfvénic fluctuations in slab geometry enter the
power spectral density P̃ (k) = δB̃2/B2

0 at the resonant wave number k ≈ Ωp/v.
If this result holds for the solar wind termination region, the evolution of the

Alfvénic fluctuations with heliocentric distance gives an estimate of the injection
threshold for suprathermal ions into first-order Fermi acceleration at the termi-
nation shock and for the confinement and build-up of pressure of suprathermal
(energetic) particles in the turbulent heliosheath plasma flow. Some uncertainty
enters the estimate because it is not entirely clear what happens to the Alfvénic
turbulence at the quasi-perpendicular termination shock itself. However, Voyager
1 (Acuña et al., 2006) magnetic field data give some constraints on the order of
magnitude of Alfvénic fluctuations in the heliosheath.

This tutorial will be organized as follows: In Section 7.2 we will review the
properties of solar wind turbulence and its evolution over heliocentric distance. In
Section 7.3, we calculate the injection threshold for first-order Fermi acceleration
at the solar wind termination shock as a function of the shock normal angle and
as a function of heliolongitude and heliolatitude. In Section 7.4 we will derive the
transport parameters K and Dvv and discuss the evolution of suprathermal tails in
the ion distributions over heliocentric distance. Section 7.5 discusses the dynamical
role of energetic particles near the termination shock. In Section 7.6 numerical
simulations of the termination shock reformation and of the microscopic structure
are summarized. Section 7.7 contains the conclusions. Appendix 7.A presents a
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compact mathematical derivation of the relation of the transport parameters K
and Dvv to the power spectral densities of compressive and non-compressive MHD
solar wind turbulence, while Appendix 7.B summarizes in detail the mathematical
model of magnetohydrodynamic (MHD) turbulence in the supersonic solar wind
plasma, which is briefly wrapped up in the following Section.

7.2 Evolution of solar wind turbulence

Present models consider the Alfvén radius – the distance from the Sun, where
the bulk solar wind reaches the Alfvén speed – as the “birth place” of Alfvénic solar
wind turbulence. This view has been initiated by models that dealt with purely
non-compressive fluctuations that propagate in a proton-dominated solar wind with
the Alfvén speed vA = B0/

√
µ0npmp, where B0 is the ambient interplanetary

magnetic field strength, np is the proton density and mp the proton mass. Once
the solar wind has reached the Alfvén speed, the Alfvénic fluctuations cannot
return any more to the solar source, and, therefore, the properties of the Alfvénic
turbulence in a homogeneous solar wind are determined by the boundary conditions
at the Alfvén radius. This situation may approximately be realized in the polar
coronal hole regions (vertical axis in Figure 7.1). There, quasi-stationary fast solar
wind streams with non-compressional (Alfvénic) fluctuations dominate.

However, there are many more sources of solar wind turbulence outside the
Alfvén radius, in particular close to the ecliptic plane (horizontal axis in Figure 7.1).
Coronal mass ejections and stream interactions between slow and fast solar wind
streams drive compressional fluctuations through interplanetary shocks and global
structures such as Co-rotating Interaction Regions (CIRs) and (Global) Merged
Interaction Regions (GMIRs).

Furthermore, any anisotropy in particle distributions at speed v, f(v, µ) −
f(v,−µ), leads to growth of Alfvén waves by the resonance condition Ω+k‖vµ−ω,
where µ is the pitch-angle cosine and k‖ can have both signs describing Alfvén
waves travelling parallel and antiparallel along the ambient magnetic field B0. Any
spatial pressure gradient of a particle distribution leads to an anisotropy. The
contribution of Solar Energetic Particles (SEPs) to the Alfvén wave driving in the
inner heliosphere is not yet evaluated sufficiently in the literature.

An example of SEP-driven interplanetary Alfvén waves is shown in Figure 7.2.
In panel (B) the increase of Alfvénic wave power above the ambient level of solar
wind turbulence due to energetic protons is shown (Bamert et al., 2004). The
amplified waves have indeed been identified as being Alfvénic. Panel (C) shows the
increase in the power of magnetic fluctuations at an interplanetary quasi-parallel
shock, which matches fairly well the model by Vainio and Schlickeiser (1999). The
interplanetary shocks driven by coronal mass ejections (CMEs) are presumably
strongest close to the Sun at about 4 − 6 solar radii so that most of SEP-driven
turbulence may be generated there. This location of maximum shock strength,
however, is still outside the Alfvén radius.

The Alfvénic turbulence in the solar wind is anisotropic (Figure 7.3). There
are more anti-sunward than sunward propagating waves. This may be a natural
consequence of the fact that outward propagating waves have a higher escape prob-
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Figure 7.1: Schematic overview of the heliosphere showing some of the most im-
portant processes of solar wind turbulence generation.

ability from the region inside the Alfvén radius. On the other hand, SEP-driven
Alfvén waves also preferentially propagate anti-sunward.

The generation and amplification of turbulence at a quasi-perpendicular shock
such as the solar wind termination shock and near stream interfaces of co-rotating
interaction regions (CIRs) has not yet been studied theoretically in detail. How-
ever, the data shown in Figure 7.3 suggest that stream interactions decrease the
anisotropy, which may be an indicator for the generation of isotropic compressional
fluctuations. As outlined by Ness (2006, this volume), the inner heliosheath i.e.
the turbulence region downstream of the solar wind termination shock, is indeed a
region of strongly compressional turbulence.

In contrast, the polar coronal hole (fast) solar wind is a region with nearly
incompressional fluctuations. Horbury and Balogh (2001) have studied the radial
evolution of the solar wind turbulence in Ulysses magnetometer data (Figure 7.4).
It appears that the turbulence in the inertial range scales with r−3, where r is
the heliocentric distance. This scaling corresponds to the so-called WKB-scaling,
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Figure 7.2: Overview of power spectral densities of magnetic field fluctuations near
the strongest interplanetary shock during the Bastille Day event (Kallenbach and
Bamert, ACE news #91).

Figure 7.3: Turbulence properties of the solar wind at 1 AU (Tu et al., 1990).

which applies if there are no sources of turbulence, in particular no sources for
compressional fluctuations.
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Figure 7.4: Evolution of solar wind turbulence properties between 1.4 and 4.1 AU
in polar coronal hole streamers (Horbury and Balogh, 2001). The power of solar
wind turbulence follows the law log10 P = AP + BP log10 r + CP sin θ, where r is
the heliocentric distance and θ the heliolongitude. The power spectral index α of
the turbulence follows the law α = Aα + Bα log10 r + Cα sin θ.
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A detailed mathematical model of solar wind MHD turbulence is summarized in
the Appendix (Section 7.B). The resulting equations of evolution with heliocentric
distance are (Equation 7.70):
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Here, U is the solar wind bulk velocity, and the magnetic energy is defined as
Eb = b2/ (2µ0ρ), where b is the amplitude of the magnetic field fluctuations. For
slab and 2D-MHD turbulence, the mixing parameter Γ describes the coupling of
magnetic and velocity fluctuations. As is derived in the Appendix (Section 7.B),
we have Γ = −σD cos2 Ψ, where σD = (rA − 1) / (rA + 1) with the Alfvén ratio
rA = Ev/Eb. The Alfvén ratio gives the ratio between the power per unit mass in
the kinetic fluctuations Ev = v2/2 and the magnetic fluctuations Eb. In general,
i.e. for σD 6= 0, the coupling between magnetic and kinetic fluctuations depends
on the angle Ψ between the plasma flow and the ambient magnetic field.

In the solar wind, we have Γ > 0 (σD < 0) or rA = Ev/Eb < 1, respectively.
For purely Alfvénic fluctuations, we have σD = 0 and, thus, Γ = 0. This means
that Alfvénic fluctuations with Ev − Eb = 0 convect unchanged at any angle Ψ in
the solar wind plasma as long as the expansion can be neglected. Even at Ψ = 90◦

magnetic and kinetic fluctuations do not couple.
Without dissipation, sources, or mixing, i.e. lc = ∞, S = 0, and Γ = 0,

Equation (7.2) fulfils the familiar WKB solution
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For Ψ ≈ 0 and σD ≈ −1, i.e. for a solar wind flow parallel to the ambient
magnetic field dominated by magnetic fluctuations, we have Γ ≈ 1. In that case it
follows that b/b0 ∝ r0/r as was suggested by Jokipii and Kota (1989) for the polar
magnetic field. Such a field with strong magnetic fluctuations enhances cosmic
ray transport across the ambient magnetic field. Further out at the Ulysses orbit,
where the interplanetary (heliospheric) magnetic field is rather perpendicular, the
fluctuations in the coronal hole regions rather follow the WKB solution (Figure 7.4).

For a general Γ 6= 1, i.e. for a stronger coupling between kinetic and magnetic
fluctuations and/or non-Alfvénic fluctuations, and including sources of the form
S = CSUEb/r, the solution of Equation (7.2) is
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All acceleration and modulation processes of Solar Energetic Particles (SEPs),
Galactic Cosmic Rays (GCRs), and Anomalous Cosmic Rays (ACRs) involve tur-
bulence in the solar wind and in its source regions. Therefore, the above described
evolution of solar wind turbulence, which determines the evolution of transport
parameters over heliocentric distance, is essential to understand the behaviour of
all suprathermal tails and energetic particle populations, such as ACRs, GCRs,
and SEPs, in the heliosphere.

In the next section, the evolution of the parallel mean free path over the he-
liocentric distance is evaluated in order to estimate the injection threshold for
suprathermal ions in the solar wind into the first-order Fermi acceleration process
at the solar wind termination shock.

7.3 Injection threshold at the termination shock

Transport parameters of energetic ions are usually described in the frame of the
quasi-linear theory (QLT), a theory based on the original work by Jokipii (1966).
A recent study by Bamert et al. (2004) suggests that the parallel mean free path
derived from the QLT,
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3
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(
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16
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0
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describes fairly well the propagation of energetic protons with speed v and angular
gyro-frequency Ωp in the solar wind plasma, if only the Alfvénic fluctuations in

slab geometry enter the power spectral density P (kr) = δB̃2 (kr) /B2
0 at the reso-

nant wavenumber kr ≈ Ωp/v = r−1
g . We assume that the power spectral density of

the Alfvénic fluctuations follow a power law, e.g. a Kolmogorov law with spectral
index s = 5/3, and that there are as many forward as backward travelling waves.
The parameter ζA describes the square of the total Alfvénic fluctuation amplitude
in relation to the square of the ambient magnetic field amplitude B0 and is propor-
tional to the power per unit mass in the magnetic fluctuations Eb used in Equation
(7.2). The correlation length or outer scale lc;A of the Alfvénic fluctuations can be
interpreted as the maximum wavelength of the turbulence, structures larger than
lc;A are ordered, while structures smaller than lc;A are chaotic or turbulent. Near
Earth, the Alfvénic correlation length is about lc;A ≈ 0.03AU (Goldstein et al.,
1995).

The above expression for λ‖ is derived in Appendix 7.A.3. In the literature,
however, one often finds the pre-factor 3/(8π) instead of 3/16.

7.3.1 Evolution of turbulence with heliocentric distance

The parallel mean free path is the basic transport parameter for charged-particle
transport in the supersonic solar wind. It is also one reference for charged particle
transport in the heliosheath and, therefore, can be used to estimate the injection
threshold speed for ions to be diffusively accelerated at the termination shock.
Diffusive acceleration at the termination shock occurs when the diffusion speed in
the heliosheath overcomes the steady-state convection speed of suprathermal ions.
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Figure 7.5: Evolution of the parallel mean free path of protons with heliospheric
distance in the ecliptic plane. The inset qualitatively represents the increase in
turbulent power observed by the Voyager 1 magnetometer (see Acuña et al., 2006,
for the precise data).

And this diffusion speed is related to the parallel mean free path. Therefore, the
calculation of the evolution of the turbulent power with heliocentric distance is the
basis to evaluate the transport parameters in the solar wind termination region.

The parallel mean free paths for different proton energies at 1 AU are taken
from the observations by Bamert et al. (2004) of the upstream region of the Bastille
Day shock (see Figure 7.5 for the values). The evolution of the Alfvénic component
of solar wind turbulence is calculated according to Equation (7.4). This equation
is equivalent to the model of Zank et al. (1996a). As in their work, we assume
a constant mixing ratio Γ = 0.2 between magnetic field and velocity fluctuations
in the solar wind. The parameter Γ is then defined as Γ = 〈−σD cos2 Ψ〉 (see
Eq. 7.65), where σD is the Alfvénicity and the brackets mean the average over
the heliocentric distance. The assumption of constant Γ allows for an analytical
solution of the problem. Note, that the pick-up ion driven magnetohydrodynamic
(MHD) turbulence is not important for the mean free paths of the higher-energetic
particles because these waves are at higher frequencies. However, these MHD-waves
partly heat the solar wind and actually mainly heat the pick-up ions themselves
(Isenberg et al., 2003; Chalov et al., 2006).

Some uncertainty enters the estimate of turbulent power in the heliosheath
because it is not entirely clear what happens to the Alfvénic turbulence at the quasi-
perpendicular termination shock itself. Voyager 1 magnetic field data give some
constraints on the order of magnitude of Alfvénic fluctuations in the heliosheath as
shown in Figure 7.5. The estimate of the downstream parallel mean free path is not
obvious, however, as it is not clear whether the amplification of Alfvénic turbulent
power corresponds to the factor 40 observed by Voyager 1 for the total amplification
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of magnetic turbulent power. However, the gradients of the energetic particle flux
at different energies in the heliosheath suggest approximate agreement with the
assumption that the Alfvénic turbulent power also increases by a factor close to 40
at the termination shock. Figure 7.6 shows the Voyager data and the derivation
of a mean free path by applying Equation (7.31) to the downstream region. The
question of why the flux of energetic particles still increases in the heliosheath
has been interpreted in different ways. As depicted in Figure 7.7, McComas and
Schwadron (2006) suggest that the most efficient acceleration of Anomalous cosmic
rays (ACRs) and Termination Shock Energetic Particles (TSPs) mainly takes place
at the “flanks” of the heliosphere because the magnetic field lines connecting to
the termination shock are longest and most time is available to accelerate ions to
high energies. As the termination shock is typically closest to the Sun at the nose
(apex), the connecting lines are longest for the regions at heliolongitudes 90◦ away
from the nose, as should become clear from the geometry in Figure 7.7 (left). In
the nose region, where Voyager 1 has crossed the termination shock, the flux tubes
connecting to the shock become longer and longer while travelling into the helio-
sheath. This explains the increasing flux of TSPs/ACRs. McComas and Schwadron
(2006) also assume that the injection threshold into first-order Fermi acceleration
is lower at the “flanks” because the termination shock is less perpendicular. These
ideas have in fact already been formulated by Chalov (1993; 2000; 2005), Chalov
and Fahr (1996; 2000), and Chalov et al. (1997). We will get to the variation of
the injection threshold with heliolongitude in the next Section.

Alternatively, the TSP/ACR flux could increase while penetrating the down-
stream region of the termination shock because of stochastic acceleration in the
compressional fluctuations of the heliosheath plasma. Decker et al. (2005) orig-
inally suggested that the suprathermal ions behave like an ideal gas which gets
compressed during the transition from the upstream solar wind to the heliosheath,
and that first-order Fermi acceleration plays a minor role. We will get to this
hypothesis in Section 7.4.

7.3.2 The injection threshold as a function of the shock nor-

mal angle

According to Giacalone and Jokipii (1999), the threshold for injection of supra-
thermal ions into the first-order Fermi acceleration process at a shock with up-
stream solar wind speed V1 in the shock frame is

vinj = 3V1

[

1 +

(

κA/κ‖

)2
sin2 Ψ +

(

1 − κ⊥/κ‖

)2
sin2 Ψcos2 Ψ

[(

κ⊥/κ‖

)

sin2 Ψ + cos2 Ψ
]2

]1/2

;

(7.6)

Here, κ‖ and κ⊥ are the spatial diffusion parameters parallel and perpendicular to
the magnetic field, and κA is the antisymmetric component of the diffusion tensor.
See Appendix 7.A.4 for a derivation of Equation (7.6) and for the expressions for
κ⊥ and κA for the case in which the gyroradius rg of the ion at speed v is small
compared to the parallel mean free path λ‖.

Figure 7.8 shows the injection threshold (Equation 7.6) for protons as a function
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Figure 7.6: Spatial variation of energetic particle flux near the solar wind termina-
tion shock. The gradients of the downstream flux can be translated to a parallel
mean free path of 0.2 AU for 1 MeV protons, if the magnetic field deviates on
average by about 6◦ from the shock surface as measured by Burlaga et al. (2005)
with the magnetometer onboard Voyager 1. For a strict Parker magnetic field angle
of Ψ ≈ 89.3◦ and a totally spherical termination shock, the radial mean free path
λr ≈ λ‖ cos2 Ψ + λ⊥ sin2 Ψ would yield λ‖ ≈ 15 AU for 1 MeV protons. How-
ever, this seems unrealistic, so that λ‖ ≈ 0.2 AU can be taken as a baseline value.
http://sd-www.jhuapl.edu/VOYAGER/images/vgr qlp/v1 lecp/
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V O Y A G E R 1V O Y A G E R 1

Figure 7.7: Left: Schematic geometry of the termination shock and the heliospheric
magnetic field (McComas and Schwadron, 2006). Right: Description of the solar
wind termination region by Decker et al. (2005).

Figure 7.8: Injection threshold into first-order Fermi acceleration of protons at the
solar wind termination shock as a function of the shock normal angle.



7.4. Evolution of suprathermal tails 215

of the shock normal angle Ψ, based on the turbulence levels that determine the
parallel mean free paths in Figure 7.5. The limiting cases are angles between the
ambient magnetic field B0 and the shock normal angle of Ψ = 90◦ and Ψ = 0◦. This
yields injection threshold speeds vinj (Ψ = 90◦) = 3V1λ‖/rg and vinj (Ψ = 0◦) =
3V1. The decrease of the injection threshold at Ψ = 90◦ with respect to Ψ ≈ 80◦

comes from the dominance of the term with κA. The return of the ions from the
downstream plasma at Ψ ≈ 90◦ is a combination of gyration and perpendicular
scattering, which is more efficient than the perpendicular scattering at Ψ ≈ 80◦. It
is interesting that the termination shock with Ψ ≈ 90◦ is particularly well suited
for injection because the process of pre-acceleration during multiple reflections also
works best at Ψ ≈ 90◦ (le Roux et al., 2000), in particular if the scale size of the
shock ramp is of the order of the electron inertial length (see Section 7.6).

The expressions in Equation (7.6) correspond to the classical hard-sphere scat-
tering theory, which is only valid if the gyro-radius of the ions, rg, is larger than the
correlation length of the turbulence (Giacalone and Jokipii, 1999). This is not the
case in the supersonic upstream solar wind, but may be the case in the downstream
thermalized heliosheath plasma (Burlaga et al., 2005). The correlation length may
be of the order of the gyro-radius of the bulk protons, which is shorter than the
gyro-radius of suprathermal and energetic particles.

7.4 Evolution of suprathermal tails

We solve the Parker equation (7.1) by neglecting spatial diffusion and drift. We
assume spherical symmetry and constant solar wind speed. We consider momen-
tum diffusion in compressional turbulence regions which are larger than the mean
free path for pitch-angle scattering and neglect momentum diffusion in Alfvénic
turbulence (see Section 7.A). For the momentum diffusion parameter we assume
that it scales as Dvv ∝ r−1v2. Any scaling law of Dvv close to r−1 may be ap-
proximated over some range of heliocentric distance by r−1. Observations point
towards Dvv ∝ r−0.7v2 (see Chalov, this volume, and references therein), but the
case Dvv ∝ r−1v2 can be solved analytically because all terms in the Parker equa-
tion (7.1) get the same power in r. This leads to an ordinary differential equation
in v. We first solve the homogeneous part of the Parker equation (7.A), i.e. with
Q = 0 and S = 0, and then add a source QPUI (r, v) of freshly ionized pick-up
ions. The Parker equation is rewritten in speed units u = v/VSW and radius
ρ = r/1AU. In these normalized units the momentum diffusion parameter has the
form D2ρ

−1u2, where D2 is dimensionless.
We obtain a homogeneous solution fhom:
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3
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2

3D2

− 3β

2 + 9D2

, (7.7)

where the approximation for α applies as long as 3β/ (2 + 9D2) � 3 + 2/ (3D2).
The pre-factor f0 is determined from the local source of freshly ionized inter-

stellar hydrogen atoms. This source scales as ρ−2 outside the ionization cavity
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Figure 7.9: Evolution of the flux of suprathermal ions with heliocentric distance
ρ from uncalibrated data of the Low Energy Charged Particle (LECP) instrument
from the project homepage at Caltech. Voyager 1 moves in average about 3 AU
per year. Despite the large variations due to events such co-rotating and merged
interaction regions, the mean scaling may be close to ρ−1 as denoted by the yellow
line. A spectral index α = 5.4 of the phase space density seems to be fairly typical.

around the Sun extending out to about 7.5 AU. For interstellar helium atoms, the
ρ−2 scaling is valid further inwards, in particular in the upwind direction of the
interstellar medium, i.e. Q(u, ρ) = ρ−2q(u) for ρ > 1. The inhomogeneous solution
finhom then scales as ρ−1 i.e. β = 1.

Trusting the simplified model typical values of D2 can be derived from the
observed spectral index of suprathermal tails. They are in the range α ≈ 5...6
(Gloeckler, 2003). For a momentum diffusion parameter D2 ≈ 0.2 (and β = 1) the
spectral index is α ≈ 5.4. Note that α cannot be smaller than 5. This is the limit,
when stochastic acceleration becomes the dominant term in the transport equation,
i.e. D2 > 1. In that case, the quasi-linear description breaks down and one gets
a cascade in speed represented by a phase space density scaling as v−5 (Fisk et
al., 2006). Figure 7.9 shows the data of the Voyager 1 LECP instrument which
supports the idea that the suprathermal ion flux scales on average inversely with
heliocentric distance, and that a spectral index of 5.4 of the phase space density is
fairly typical.

Decker et al. (2005) have suggested that first-order Fermi acceleration at the
termination shock plays a minor role for ACRs. Instead, stochastic acceleration
in the heliosheath could be an important process. As the momentum diffusion
parameter is already D2 ≈ 0.2 in the region upstream of the termination shock,
it could easily be larger than unity in the heliosheath plasma and make stochastic
acceleration very efficient.

It is instructive to evaluate the acceleration time scales for first-order Fermi
acceleration at the termination shock with stochastic acceleration (second-order
Fermi) in the heliosheath. The time scale for first-order Fermi acceleration is
(Kallenbach et al., 2005, and references therein):

tacc =
3

Vup − Vds

∫ v1

v0

(

vΛr;up

3Vup

+
vΛr;ds

3Vds

)

dv

v
⇒
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τacc;F1 :=
dtacc
dv

v ≈
(

E

1MeV

)2/3

cos2 Ψ

(

A

Q

)1/3

yr , (7.8)

For this rough estimate, mean free paths of order 0.5 AU for protons with 1 MeV
energy have been assumed. Compared to this, the acceleration time scale for
stochastic acceleration in compressional fluctuations in the upstream slow solar
wind with D2 ≈ 0.2 is about 4 years (ρ ≈ 100). This is derived from Equation
(7.7), which is written in units of the solar wind convection time scale near Earth.
If the compressional fluctuations are stronger by a factor 40 in the heliosheath
compared to the upstream solar wind, the acceleration time scale may be about
0.1 year at any energy and mass-per-charge ratio of the ions. This shows that
at the high energies in particular stochastic acceleration may well compete with
first-order Fermi acceleration.

Note that only in the slow solar wind is the momentum diffusion parameter as
large as D2 ≈ 0.2, while the fast solar wind has mainly Alfvénic fluctuations, and
D2 is much smaller. If stochastic acceleration is the main process to energize the
ACRs, their source is concentrated around the ecliptic plane.

7.5 The dynamical role of energetic particles near

the termination shock

Energetic particles near the termination shock can influence the structure of the
shock and in a self-consistent manner their own intensity. The mean free path of
energetic particles is usually much larger than the scale size of the shock ramp and
their energy is much higher than the electric cross-shock potential. Therefore, they
move rather freely over the shock layer, i.e. they penetrate from the downstream
region far into the upstream region before they are scattered and convected back
over the shock into the downstream region. While they are scattered they transfer
momentum to the upstream plasma and slow down the upstream plasma if their
pressure is comparable to the bulk plasma pressure. A shock precursor is formed
and the subshock compression ratio is reduced.

Whenever there is a spatial gradient in energetic particle distributions, there is
an anisotropy in the distribution observed in the plasma frame. These anisotropies
lead to the generation of plasma waves. These plasma waves cascade and convect
over the shock to the downstream region and, consequently, increase the injection
threshold for first-order Fermi acceleration and thus limit the energetic particle
intensity. These phenomena will be discussed in the next two subsections.

7.5.1 Self-consistent limitation of the TSP flux?

The influence of self-generated upstream waves on the injection threshold for
termination shock energetic particles (TSPs) is described in Kallenbach et al.
(2005). The termination shock may on average mostly have shock normal angles
of Ψ ≈ 80◦ ± 5◦. In that range of angles Ψ, if cos2 Ψ > r2

g/λ2
‖, the term cos2 Ψ in



218 7. Turbulence and Ion Acceleration in the Outer Heliosphere

Figure 7.10: The flux of particles accelerated by the first-order Fermi process does
not increase proportionally with the flux of injected suprathermal tails because the
higher flux of energetic protons generates waves, which in turn increase the injection
threshold for first-order Fermi acceleration. The red line denotes the minimum
pre-factor f0ρ

−1
TS of the proton phase space density injected at the termination

shock, where it is assumed that the proton suprathermal tails observed by Gloeckler
(2003) scale in the heliosphere as f0ρ

−1u−α. The spectral index of the phase space
densities α of the suprathermal tails is typically between 5 and 8. The TSP flux is
normalized to the typical unmodulated flux of the ACRs. The proton TSP phase
space density at 1 MeV (blue line) observed by Stone et al. (2005) is 10−5 s3 km−6.

the denominator of the expression for the injection threshold (Eq. 7.6) eventually
dominates, so that the injection condition becomes

vinj = 3V1rg/
(

λ‖ cos2 Ψ
)

. (7.9)

This is the injection threshold condition used in Kallenbach et al. (2005). If
cos2 Ψ < r2

g/λ2
‖, this evaluation has to be modified. For an ideal stationary spheri-

cal termination shock and a heliospheric magnetic field in the form of a Parker spi-
ral, the self-limitation of energetic particle intensity would occur because upstream
energetic protons drive turbulent waves. The amplification of the power spectral

density of Alfvénic turbulence is of order GA (k) = 1500 cos Ψ (k/k1 MeV)
γsh−13/3

(Kallenbach et al., 2005), where γsh is the spectral index of first-order Fermi ac-
celerated particles, γsh = 3ξsh/ (ξsh − 1) with ξsh = Vup/Vds = nds/nup the shock
compression ratio. The wave number k1 MeV is approximately the wave number
of Alfvén waves which resonate with protons at 1 MeV energy. The amplified
Alfvén waves are transmitted through the termination shock and, thus, decrease
the parallel mean free path, λ‖, in the heliosheath. This increases the injection
threshold and consequently decreases the energetic particle flux – a self-limiting
process. This self-limitation becomes evident in Figure 7.10. It seems that it may
be hard to reach the ACR flux levels by first-order Fermi acceleration at a homo-
geneous termination shock. Even at high injection phase space density (ordinate
in Figure 7.10) the TSP flux does not reach the unmodulated ACR flux (unity on
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Figure 7.11: Pressure build-up of energetic particles in the heliosheath (Alexashov
et al., 2004).

the abscissa of Figure 7.10) originally expected to be observed at the termination
shock. The observed level of TSP flux at the termination shock (Stone et al., 2005)
in fact matches the model shown in Figure 7.10 (line for 1 MeV particles). Per-
haps, additional stochastic acceleration in the heliosheath is necessary to reach the
unmodulated ACR level (Kallenbach et al., 2005).

Another possibility is that there are areas of injection at low turbulence levels
and other areas of acceleration at high turbulence levels causing short acceleration
time scales. In this way, the unmodulated ACR flux may be reachable by the
first-order Fermi process at the termination shock.

7.5.2 ACR pressure build-up in the heliosheath

Figure 7.11 shows the pressure build-up of TSPs and ACRs in the heliosheath
according to numerical simulations by Alexashov et al. (2004). The parameter
with index 2 corresponds to the evolution of the mean path over the heliocentric
distance displayed in Figure 7.5. The parallel mean free path is in that case very
roughly about λr ≈ λ‖ ≈ 0.5 AU for protons at 1 MeV energy in the heliosheath.
This in fact matches the observed gradients of the TSP/ACR flux in the heliosheath
after Voyager 1 had crossed the solar wind termination shock (Stone et al., 2005).
For this parameter set, the TSP/ACR pressure builds up to a significant fraction
of the dynamical pressure of the neutral gas component of the Local Interstellar
Medium (LISM).

7.5.3 Comparison to data

In order to compare the model results to real data one must know the solar wind
parameters and the flux and spectra of suprathermal ions in the outer heliosphere
for regions both upstream and downstream of the termination shock, i.e. in the
heliosheath.
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Figure 7.12: Voyager 1 in-situ ion flux data (Stone et al., 2005) from the heliosheath
plasma and “remote-sensing” energetic neutral atom data from CELIAS/HSTOF
(see also Czechowski et al., this volume), HENA IMAGE data (E. Roelof, pri-
vate communication), and Mars Aspera-3 data (NPD, Galli et al., 2006). The
blue line indicates the model proton spectra in the heliosheath for the injection
of the minimum flux of suprathermal tails in the slow solar wind f = f0ρ

−1u−5,
f0 (u = 1) ≈ 50 s3 (Gloeckler, 2003), and an enhancement of their flux by about a
factor 10 at the termination shock. That HSTOF data are below the blue line is
due to the fact that the charge exchange cross section decreases at higher energies,
as is illustrated in the left panel (Gruntman et al., 2001).

Until December 2004, only energetic neutral atom (ENA) observations for H
and He by CELIAS/HSTOF were available to analyze suprathermal ion flux data
in the heliosheath. The flux of ENAs near Earth’s orbit created from the supra-
thermal ion tails anywhere in the heliosphere is modelled in detail by Gruntman
et al. (2001), Czechowski et al. (this volume), and Kallenbach et al. (2005). Since
the crossing of the termination shock by Voyager 1 (Stone et al., 2005) in December
2004, there are in-situ measurements of suprathermal ion distributions in the helio-
sheath plasma. Figure 7.12 demonstrates that estimates of the suprathermal ion
flux in the heliosheath from CELIAS/HSTOF data are in agreement with the in-
situ measurements. Some new data have been contributed by the Neutral Particle
Detector (NPD) onboard Mars Express. At low energies (< 10 keV), the phase
space densities of hydrogen atoms are definitely higher than the values derived from
pre-acceleration in the supersonic solar wind and acceleration at the termination
shock. This indicates that further stochastic acceleration of low-energy protons
takes place in the heliosheath. In fact, this stochastic acceleration appears to be
very efficient. The high levels of compressional fluctuations observed in the helio-
sheath (Ness et al., this volume) support this view.
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Figure 7.13: Left: Reduction of the solar wind termination shock compression ratio.
Right: Shape of the precursor to be compared to the data in Figure 7.14 (Alexashov
et al., 2004).

Figure 7.14: Observed slow-down of the solar wind upstream of the termination
shock (Decker et al., 2005).

The data seem to support the idea that the solar wind termination shock is
a cosmic-ray-mediated shock. Figure 7.13 shows the modelled reduction in the
compression ratio of the solar wind termination subshock, in particular for the
parallel mean free path denoted by Index 2 that corresponds to the model of the
evolution of solar wind turbulence and the observed increase in turbulence at the
shock (Figure 7.5). Figure 7.14 shows the slow-down of the solar wind observed
by Voyager 1. The error bars are large because the plasma instrument onboard
Voyager 1 is not operating anymore, so that the solar wind velocity has to be derived
from anisotropies in the energetic particle flux measured by LECP. Although the
uncertainties are large, the solar wind seems to be slowed down much below the
speed of about 250–300 km/s, which corresponds to the maximum slow-down due to
the mass loading of interstellar pick-up protons in the outer heliosphere. Therefore,
it seems likely that the solar wind termination shock is cosmic-ray-mediated by the
TSP/ACR population. However, as is visible from Figure 7.6, the energetic particle
pressure gradient in the upstream solar wind plasma is not in the form of a smooth
precursor, but rather spiky and intermittent.
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Figure 7.16: Reformation of a quasi-perpendicular shock (Scholer et al., 2003).
Present computer resources prohibit a simulation with a realistic mass ratio mi/me

and at the same time a value of τ = (ωpe/Ωce)
2

appropriate for the solar wind.
However, from independent variations of both parameters, the structure of the
termination shock has been inferred, assuming a shock normal angle to the down-
stream magnetic field of θBn = 87◦.

(m/2)v2
x � eφ, where m is the particles’ mass, and e the electron charge, and (2)

the Lorentz force is smaller than the force exerted by the electrostatic potential eφ,
i.e., evyB < eφ/dcs, where B is the magnetic field magnitude in the shock ramp.
Thus, the maximum energy a particle can reach by shock surfing is inversely pro-
portional to the square of the cross-shock potential length scale dcs. Assuming that
the cross-shock potential is of the order of the upstream bulk energy per charge,
and that dcs is of the order of the electron inertial length Le, the maximum pickup
ion energy is close to about 1 MeV/amu for ions of any atomic mass A or atomic
charge Q. This is sufficient to overcome the injection threshold for first-order Fermi
acceleration (Figure 7.8).

However, the typical shock ramp scale size may be much larger, of the order of
the ion (proton) inertial length Lp = Le

√

mp/me or of the order of the gyroradius
(Larmor radius). The latter scale size would be plausible from Figure 7.15. The
shock ramp can be as short as the electron inertial length, if the shock wave is
similar to a damped solitary magnetosonic wave (Tidman and Krall, 1971).

Scholer et al. (2003) have performed one-dimensional (1-D) full particle sim-
ulations of almost perpendicular supercritical collisionless shocks. The ratio of
electron plasma frequency ωpe to gyrofrequency Ωce, the ion-to-electron mass ra-
tio, and the ion and electron β (β = plasma to magnetic field pressure) have been
varied. Due to the accumulation of specularly reflected ions upstream of the shock,
ramp shocks can reform on time scales of the gyroperiod in the ramp magnetic
field (Figure 7.16).

Figure 7.17 demonstrates the process by which reformation occurs. It shows a
vixx phase space plot for βi = 0.1 at a specific time and the respective magnetic
field profile. The large velocity difference between the cold incoming solar wind
distribution and the cold specularly reflected ions results in a large-scale vortex
between the ramp and the position upstream where the reflected ions are turned
around perpendicular to the shock normal and to the magnetic field, and accumu-
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Figure 7.17: vix − x phase space plot and superimposed magnetic field profile at a
specific time (Scholer et al., 2003).

late. Since B/n is essentially constant in a compressible plasma, this results in an
upstream magnetic field hump. The solar wind is slowed down, and the solar wind
density increases, causing a further magnetic field increase. Eventually the hump
takes over the role of the reformed shock. This behaviour of the ion phase space
density is typical for all reformation cycles.

Self-reformation is not only a low ωpe/Ωce process, but occurs also in (ωpe/Ωce)
2

� 1, low-β simulations. Self-reformation also occurs in low ion β runs with an ion
to electron mass ratio mi/me = 1840, so that it may actually occur at the solar wind
termination shock. However, in the realistic mass ratio runs, an electromagnetic
instability is excited in the foot of the shock, and the shock profile is considerably
changed compared to lower mass ratio runs. Linear analysis based on three-fluid
theory with incident ions, reflected ions, and electrons (Matsukiyo and Scholer,
2003) indicates that the instability is a modified two-stream instability between
the decelerated solar wind electrons and the solar wind ions on the whistler mode
branch. If the waves generated by this instability are sufficiently strong to trap
pick-up ions, it may be the instability that causes the self-reformation.

In the reforming shock, part of the potential drop occurs at times across the
foot, and part of the potential (∼ 40%) occurs over a few (∼ 4Le) electron inertial
lengths in the steepened-up ramp. Self-reformation is a low ion β process and
disappears for a Mach 4.5 shock at/or above an ion βi ∼ 0.4. The ion thermal
velocity has to be an order of magnitude smaller than the shock velocity in order
for reformation to occur. Scholer et al. (2003) conclude that according to these
simulations only part of the potential drop occurs for relatively short times over
a few electron inertial lengths Le, and that, therefore, coherent shock surfing is
not an efficient acceleration mechanism for pickup ions at the low βi heliospheric
termination shock.

Nonetheless, the electric shock potential may have important consequences for
Anomalous Cosmic Ray and Termination Shock Energetic Particles (ACRs and
TSPs). Possibly, these abundances can be explained by the following scenario: (1)
TSPs are ions that are multiply reflected at the shock potential and injected into
first-order Fermi acceleration, which has an injection threshold much lower than
often assumed (Figure 7.8). The TSPs do not undergo mass-per-charge (A/Q)
fractionation because shock surfing is a process independent of A/Q. (2) ACRs
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Figure 7.18: Schematic showing the characteristics of the transmission of power-law
suprathermal tails through a shock potential.

are suprathermal ions directly transmitted through the electric potential of the
termination shock, but not returned to the shock for first-order Fermi acceleration.
These ions undergo stochastic acceleration in the heliosheath. The transmission
through the termination shock potential prefers high A/Q species in concordance
with ACR abundances. (3) A fraction of the reflected ions are thermalized into the
bulk plasma of the heliosheath. Low A/Q species are preferentially thermalized.
This scenario would match observations. For instance, the H/He ratio is about 10
for TSPs and about 5 for ACRs (Stone et al., 2005).

This ‘transmission’ scenario is quite simple, but can be explained in some
more detail as follows: Three populations approach the termination shock from
the upstream solar wind: (1) the bulk solar wind ions idealized as a pencil beam
fbulk ∝ δ (u − 1, µ − 1), (2) the freshly ionized pick-up ions in a shell distribu-
tion q (u) ∝ δ (u − 1), and (3) the suprathermal tails fST ∝ u−α for u > umin.
The suprathermal tails at the termination shock presumably reach down to almost
umin ≈ 1 (u = v/Vup with Vup the upstream solar wind speed) because the speeds
of the waves causing these tails are much smaller than the speed Uup = 1 of the
supersonic bulk solar wind. Population (2) is presumably negligible at the termi-
nation shock (Kallenbach et al., 2005). In a very idealized picture, the cross-shock
potential is characterized by uS = VS/Vup ≈ 1, which stops the bulk protons to
zero speed and conserves the number of suprathermal ions at u > umin. Of course,
in reality uS is less than unity because the downstream plasma does not have zero
speed.

We define a normalized transmission function TS;R for the suprathermal tails,
which yields the downstream distribution function when multiplied with the up-
stream distribution function. The upstream distribution function is assumed to
be a power-law above the minimum speed umin with the same spectral index α as
upstream. The data of Figure 7.5 suggest that this is a valid approach. Therefore,
the normalized transmission function TS;R for the suprathermal tails at speeds
u > umin is (see Figure 7.18 for an illustration):

∫ ∞

umin

u−α+2du = Tn;R

∫ ∞

uS√
R

(

1 − u2
S

Ru2

)

u−α+2du

⇒ Tn;R =
α − 1

2

(

uS√
Rumin

)α−3

; TS;R = Tn;R

(

1 − u2
S

Ru2

)

. (7.10)
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Figure 7.19: Comparison of the Tycho supernova bubble with the heliosphere.

The normalizing factor Tn;R indicates the increase in the phase space density at
high speeds downstream, and hence yields the availability of suprathermal ions in
the heliosheath for further stochastic acceleration. If further stochastic acceleration
occurs by compressional fluctuations, no more A/Q fractionation occurs, and the
ACR abundances are given by the transmission factor Tn;R. For the typical tails
with α ≈ 5, the fractionation pattern is mass-proportional for singly charged pick-
up ions. For larger α, the fractionation is stronger.

7.7 Conclusions

Turbulence and ion acceleration are intimately linked processes of the outer
heliosphere. The analysis of this article supports the idea that stochastic accelera-
tion in compressional fluctuations in the heliosheath is a process that can compete
with first-order Fermi acceleration at the solar wind termination shock. A viable
explanation for the composition of Termination Shock Energetic Particles (TSPs)
and Anomalous Cosmic Rays (ACRs) is that TSPs are particles which are reflected
as slightly suprathermal ions at the electric cross-shock potential of the solar wind
termination shock (TS) and subsequently accelerated by the first-order Fermi pro-
cess, while ACRs are particles transmitted as slightly suprathermal ions through
the electric cross-shock potential of the TS and subsequently stochastically ac-
celerated in the compressional fluctuations of the heliosheath. Probably, the two
processes of first-order Fermi acceleration and second-order Fermi acceleration are
intertwined. Particles that are stochastically accelerated in the heliosheath may
eventually reach an energy which gives them a sufficiently large mean free path to
cross the TS again to participate in first-order Fermi acceleration.

Lessons may be learned from the heliosphere for galactic acceleration processes.
Second-order Fermi acceleration may also be responsible for the energization of
the Galactic Cosmic Rays (GCRs). Warren et al. (2005) have observed that the
turbulence region downstream of the blast wave of the Tycho supernova is thinner
than magnetohydrodynamic models predict (Figure 7.19). This may be analogous
with the reduced size of the heliosheath due to the ACR pressure there. As the
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sum of the ACR pressure and the heliosheath bulk pressure balances the pressure
of the interstellar medium, the heliosheath bulk pressure is reduced in the presence
of the ACRs and the size of the heliosheath is consequently reduced.

This has been taken as an argument for the presence of GCRs in the region
between the blast wave and the contact discontinuity of the bubble of the Tycho
supernova. In fact, it has been taken as evidence that a supernova shock wave
accelerates the GCRs. This result may have to be verified. It may actually be the
turbulence downstream of the supernova shock that accelerates the GCRs.
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Appendix

7.A Diffusion of charged particles

Diffusion parameters are usually derived in the literature with significant mathe-
matical effort. In principle, they easily trace back to the Vlasov-Maxwell equation.
The Vlasov-Maxwell equation states that the total variation of the distribution
function of a suprathermal particle species s is extremal, which leads to

(∂t + v · ∇) fs + ∇vfs · v̇ = 0 . (7.11)

Usually the distinction is made between diffusion in non-compressional and dif-
fusion in compressional fluctuations. In the first case the plasma is treated as a
plasma with uniform bulk speed containing Alfvénic magnetic field fluctuations
with wave amplitudes δB and δE perpendicular to the ambient magnetic field,
δE ⊥ B0, δB ⊥ B0, and δE ⊥ δB. In the second case, as a consequence of com-
pression, there are fluctuations δU ‖ B0. It is convenient to choose a coordinate
system in which the mean plasma velocity is zero, 〈U〉 = 0. The particle velocity
can then be split into two parts v = v′ + δU, where it is convenient to drop the
prime for the particle velocity in the plasma frame. The Vlasov-Maxwell equation
then reads

(∂t + v · ∇ + δU · ∇) fs + ∇vfs ·

(

v̇ + δU̇
)

= 0 . (7.12)

7.A.1 Diffusion in non-compressional magnetic field fluctu-

ations in slab geometry

We assume a homogeneous plasma with E0 = 0, δU = 0, and an ambient
magnetic field B0. To the equilibrium distribution of the suprathermal species s
with charge-to-mass ratio ηs := qs/ms, determined by

∂tfs + (v · ∇) fs + ηs (v × B0) · ∇vfs = 0 , (7.13)

we add small fluctuating fields δE and δB, and a small deviation δfs of the distri-
bution function. Adding these terms to the above equation yields to first order:

∂tδfs + (v ·∇) δfs + ηs (δE + v × δB)·∇vfs + ηs (v × B0)·∇vδfs = 0

⇒ (−iω + iv · k) δfs + ηs (δE + v × δB) · ∇vfs = 0

⇒ δfs =ηs
δE + v × δB

i (ω − v · k)
·∇vfs ⇒ ∇vδfs =ηs∇v

[

δE + v × δB

i (ω − v · k)
·∇vfs

]

. (7.14)

The last term of the first line is zero because ∇v ⊥ v. Adding ∇vδfs to ∇fs in
the above first-order Vlasov-Maxwell equation and averaging over the fluctuation
scales, one identifies the second-order macroscopic term

ηs 〈|(δE+v×δB)·∇vδfs|〉= η2
s

〈∣

∣

∣

∣

(δE+v×δB)·∇v

[

δE+v×δB

(v · k − ω)
·∇vfs

]∣

∣

∣

∣

〉

. (7.15)
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We transform the above term in such a way that it describes a diffusion equation.
With a := η2

s (δE + v × δB), b := ∇v (c · d), c := (δE + v × δB) (k · v − ω)
−1

,
and d := ∇vfs we obtain

〈a · b〉=
〈

3
∑

i=1

aibi

〉

=

〈

∑

i,j

ai
∂(cjdj)

∂vi

〉

=

〈

∑

i,j

∂(aicjdj)

∂vi
−

∑

i,j

cjdj
∂ai

∂vi

〉

=
〈

∇v · D̃∇vfs

〉

; D̃=η2
s

〈∣

∣

∣

∣

(δE + v × δB) ⊗ (δE + v × δB)

(k · v − ω)

∣

∣

∣

∣

〉

. (7.16)

The last step follows because ∇v ·a = 0 as the fields do not depend on the velocity
v. Also, we have taken the term ∇vfs out of the averaging parenthesis because this
is the mean distribution function describing the evolution on space and time scales
larger than the fluctuation scales. The tensor D̃ is the general form of a diffusion
tensor, with which the stochastic motion of the charged minority particles in the
plasma is described. Two parameters are relevant: (1) the power, which is in
the plasma waves, and (2) the resonance condition that is applied to describe the
wave-particle interaction between ions of species s and the waves.

We evaluate the direct product Ã = (δE + v × δB) ⊗ (δE + v × δB) for ‘slab’
geometry turbulence which propagates gyrotropically parallel to the ambient mag-
netic field, k ‖ B0. As ∇ ·B = 0 we have δB ⊥ B0. Furthermore, for MHD-modes,

we have ∇×δE = −δḂ or in Fourier components δE = −k̂×δBω/k = −k̂×δBVph.
This means that the electric fluctuation amplitude is δE = −Vph × δB, i.e. the
negative cross product of the phase velocity with the magnetic fluctuation ampli-
tude. In other words, the electric field amplitude is zero in the wave frame. We
take δB = δBex and define v′

‖ = v‖ − Vph. This yields

(v − Vph) × δB = v′
‖δBey − v⊥δB sin φez

= δB
[

v′
‖ sinφ(er sinθ+eθ cosθ)+v′

‖eφcosφ−v⊥ sinφ(er cosθ−eθ sinθ)
]

= δB
[

er sinφ
(

v′
‖ sinθ−v⊥cosθ

)

+eθ sinφ
(

v′
‖cosθ+v⊥ sinθ

)

+eφv
′
‖cosφ

]

. (7.17)

The angle θ is the pitch angle, and the angle φ is the generally time-varying angle
between the magnetic fluctuation amplitude δBex and the perpendicular velocity
vector v⊥. We will see that we can drop the term eφv′

‖δB cos φ because we derive
the result for a gyrotropic situation. Because of

v′
‖ sin θ − v⊥ cos θ = −Vph sin θ = −Vph

√

1 − µ2 ,

v′
‖ cos θ + v⊥ sin θ = v − µVph , µ = cos θ , (7.18)

and averaging over sin2 φ, we get

Ã =
δB2

2





−Vph

√

1 − µ2

v − µVph

0



 ⊗





−Vph

√

1 − µ2

v − µVph

0
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δB2

2





V 2
ph

(

1 − µ2
)

Vph

√

1 − µ2 (µVph − v) ...

Vph

√

1 − µ2 (µVph − v) (v − µVph)
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...
... ... ...



. (7.19)
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If this tensor Ã is multiplied with the velocity gradient of a gyrotropic distribution
∇vf = (∂vf, ∂θf/v, 0), then we get a vector A:

A=
δB2

2





V 2
ph

(

1 − µ2
)

∂f/∂v − Vph

√

1 − µ2 (1 − µVph/v) ∂f/∂θ

−Vph

√

1 − µ2 (v − µVph) ∂f/∂v + v (1 − µVph/v) ∂f/∂θ
0



. (7.20)

This vector’s divergence in spherical coordinates divided by R = (k · v − ω) is

1
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. (7.21)

Now we have to take the average of these expressions, which is equivalent to the inte-
gration of δB̃2 (k) /R over dk. For a slab geometry k-space is only one-dimensional.
Only the gyro-resonant interaction is taken into account, so that the integration is
equivalent to a multiplication with k±

r = (ω ± Ω) / (vµ) of the value of the function
at k±

r . Equation (7.15) can now be written as

∂fs
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+
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+
1
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. (7.22)

These are the most often used diffusion parameters which are found in the most
recent literature (Isenberg et al. , 2003). While they give a useful description
of pitch-angle scattering or parallel mean free paths, respectively, in the super-
sonic solar wind plasma, they do not necessarily reflect the proper description of
momentum diffusion and perpendicular diffusion.

7.A.2 Momentum diffusion in compressional fluctuations

We go back to Equation (7.12), but add compressional fluctuations δU ‖ B0:

(∂t + v · ∇ + δU · ∇) fs + ∇vfs ·

(

v̇ + δU̇
)

= 0 . (7.23)
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The compressional fluctuations have much larger temporal and spatial scale than
the magnetic fluctuations in a slab geometry. The term v̇ leads to the diffusion
parameters treated above. The term δU̇, however, yields additional momentum
diffusion in analogy with D̃ in Equation (7.16):

D̃ =

〈

δU̇ ⊗ δU̇

[k · (v + δU) − ω]

〉

≈
〈

δU̇ ⊗ δU̇

k · δU

〉

if λ‖ � Lcor . (7.24)

The latter approximation is a substantial shortcut for all the mathematics for-
mulated in Bykov and Toptygin (1993) for the case that the mean free path for
pitch-angle scattering is small compared to the correlation length of the large-scale
compressional fluctuations, λ‖ � Lcor. It takes 〈k · v〉 = 〈kvµ〉 as a small number
because the pitch angle cosine µ changes rapidly over the trajectory of a charged
particle. The interaction between waves and charged particles is dominated by
kvµ − ω ≈ 0. This leaves the above term. We further evaluate

δU̇ ⊗ δU̇ ≈ [∂t + (δU + v) · ∇] δU ⊗ [∂t + (δU + v) · ∇] δU . (7.25)

We neglect δU · ∇ and ∂t with respect to v · ∇. Then we express δU = ezδU =
δU (er cos θ − eθ sin θ) in spherical coordinates. The ∇-operator only acts along the
direction of the ambient magnetic field B0, i.e. along the z-axis on δU. Therefore,
v · ∇ = vµ∂z. The tensor Ã in analogy with Equation (7.19) is

Ã = v2µ2 (∂zU)
2





µ

−
√

1 − µ2

0
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√
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√

1 − µ2 1 − µ2 ...
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 . (7.26)

The vector A in analogy with Equation (7.20) is

A=µ2v2 (∂zU)
2
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)
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−µ
√

1 − µ2∂f/∂v −
(

1 − µ2
)3/2
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0



 . (7.27)

The diffusion parameters in analogy with Equation (7.22) are

Dµµ =
〈

µ2
(

1 − µ2
)2

(∂zU)
2
(k · δU)

−1
〉

Dµv = Dvµ = v
〈

µ3
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2
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−1
〉
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µ4 (∂zU)
2
(k · δU)

−1
〉

∝ v2
〈

δU2
〉1/2

L−1
cor . (7.28)

These momentum and spatial diffusion parameters correspond to those derived in
more detail in Le Roux et al. (2005).
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7.A.3 Spatial diffusion

The spatial diffusion along the ambient magnetic field is caused by pitch-angle

scattering (parameter Dµµ in Equation 7.22). If there is a spatial gradient in
the density of suprathermal ions along the ambient magnetic field, more ions are
scattered in the direction of decreasing density rather than in the opposite direction.
The spatial diffusion coefficient is calculated as

vλ‖

3
= κ‖ = v2

∫ 1

0

µdµ

2

∫ µ

0

1 − µ′2

Dµ′µ′
dµ′ . (7.29)

It is plausible that the parallel mean free path λ‖ scales inversely with the rate of
pitch-angle scattering. Large Dµµ means a large frequency of direction changes of
order π. The ion rapidly changes direction from “backward” to “forward” motion
and does not get very far. At low scattering frequency, however, the ions move far
along the magnetic field without distortion of their trajectory.

The double integral is explained as follows: D−1
µ′µ′ = τµ′ is the temporal expec-

tation value for scattering in the pitch angle at pitch-angle cosine µ′ = cos Ψ′ and
has the dimension time / cos2 Ψ. The increase in the quadratic parallel velocity
through a change dµ′ is v′2 = v2

(

1 − µ′2
)

dµ′. The quadratic distance per time
that an ion moves while scattering from µ = 0 to µ 6= 0 is given by the inner
integral over v′2τµ′dµ′. The statistics representing the fact that scattering not only
occurs from smaller to larger µ, but also vice versa, is given by averaging over the
half-sphere 0 < µ < 1.

In Equation (7.22) the coefficient Dµµ has been given as a function of the power
spectral density of the magnetic fluctuations:

Dµµ =
∑

±

Ω2

2

(

1 − µVph

v

)2
(

1 − µ2
)

vµ − Vph

δB̃2 (k±
r )

B2
0

. (7.30)

Therefore, the parallel mean free path is

λ±
‖ =

3v2

16Ω2
P−1

(

k±
r

)

mit P
(

k±
r

)

=
δB̃2 (k±

r )

B2
0

. (7.31)

In the literature one usually finds the version with the factor 3/(8π) instead of
3/16. Figure 7.20 shows experimentally determined parallel mean free paths, which
approximately match QLT. These mean free paths have been determined from a
fit to measured turbulence levels upstream of an interplanetary shock and from the
spatial gradients of suprathermal particle populations. The turbulence level varies
because the energetic protons generate waves near the shock.

7.A.4 Derivation of the injection threshold

The derivation of Equation (7.6) is based on estimates for the streaming flux

S = κ̃∇f − V
v

3

∂f

∂v
; ∇ · S = ∇ · (κ̃∇f) − v

3

∂f

∂v
∇ · V . (7.32)
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Figure 7.20: Experimentally determined mean free paths upstream of the strongest
interplanetary shock of the Bastille Day event (Bamert et al., 2004).

The first term in the streaming flux is the anisotropic “diffusion speed” κ̃∇f with

κ̃ =





κ‖ 0 0
0 κ⊥ κA

0 −κA κ⊥



 ;

κ‖ =
1

3
vλ‖;

κ⊥

κ‖
=

r2
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‖
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(
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)2
≈

r2
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λ2
‖

;
κA

κ‖
=

rg

λ‖

1

1 +
(

rg/λ‖

)2
≈ rg

λ‖
. (7.33)

The parameter κ⊥ may become plausible with the following considerations: If we
assume turbulence with correlation length lc;A ≈ rg and ζA = 〈δB2

A〉/B2
0 ≈ 1, then

the parallel mean free path λ‖ is of the order of the gyroradius rg and parallel
and perpendicular gyrations have about the same amplitude. The latter means
λ‖ ≈ λ⊥, i.e. κ‖ ≈ κ⊥.

For decreasing turbulence amplitude, the parallel mean free path increases while
the particle has difficulties in moving across the ambient magnetic field. For small
ζA we have λ‖ � rg � λ⊥ with λ⊥λ‖ ≈ r2

g. The parameter κA describes a
superposition of gyration and scattering.

The term (v/3)(∂f/∂v)∇ · V can be understood as an expansion in orders of
the speed |V| of the convective derivative of the distribution function f (v + V) in
a medium streaming with velocity V:

〈(v + V) · ∇f (v + V)〉 ≈ V · ∇f (v) +

〈

v · ∇
[

∂f (v)

∂v
· V

]〉

. (7.34)

The brackets mean directional averaging for nearly isotropic distributions. Taking
the direction of the streaming velocity V as the projection axis, the two scalar
products lead to a term µ2, and averaging gives a factor of 1/3.

The spatial diffusion speed κ̃∇f increases with speed. At some injection thresh-
old speed vinj the downstream diffusion speed will balance the upstream convection
speed. This means that the majority of particles are not just convected through
the shock, but undergo diffusion, i.e. scattering back and forth across the shock.
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The diffusion speed along the shock normal has to be evaluated for a planar
shock. The diffusion tensor κ̃ refers to the reference system fixed to the ambient
magnetic field. The transformation on the shock normal is performed by a rotation
by the shock normal angle Ψ with respect to the magnetic field.





cos Ψ − sin Ψ 0
sin Ψ cos Ψ 0
0 0 1
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0 κ⊥ κA

0 −κA κ⊥









cos Ψ sin Ψ 0
− sin Ψ cos Ψ 0
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κ‖ cos2 Ψ + κ⊥ sin2 Ψ
(
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sin Ψ cos Ψ −κA sinΨ
(

κ‖ − κ⊥

)

sinΨ cos Ψ κ‖ sin2 Ψ + κ⊥ cos2 Ψ κA cos Ψ
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 . (7.35)

The small-scale downstream gradient scale size of the distribution function f points
normal to the shock surface ∇f = f

(

r−1
G , 0, 0

)

. This gradient “picks out” the first
row of the matrix in Equation (7.35).

The most fundamental approach for solving the Parker equation (7.1) is to
assume infinitely large upstream and downstream plasma regions. If one takes x
as the parameter along the shock normal, the Parker equation becomes

V
∂f

∂x
+

∂

∂x

[

V
v

3

∂f

∂v
+ (κ̃ · ∇f)x

]

= 0 . (7.36)

Integrating this equation over x yields

V1f (0, v) = (V2 − V1)
v

3

∂f

∂v
(0, v) ⇒ f (0, v) = f0v

−γ , γ =
3V1

V1 − V2

, (7.37)

with 1 denoting the upstream region and 2 the downstream region. This is the
standard distribution of first-order Fermi accelerated ions. It is based on the as-
sumptions, that far away from the shock the distribution f has no gradient, that
far upstream the distribution function vanishes, f (−∞, v) = 0, and that the down-
stream distribution function is constant (rG → ∞), i.e. describing a particle distri-
bution flushed away in diffusive equilibrium, and that the variation of the second
term is dominated by the jump in speed from V1 to V2 at the shock.

However, it is necessary to add sources to the above equation in order to have
any particles. These could be far upstream, f (−∞, v), and convected to the shock,
or be near the shock, fS (v):

f (0, v) = γ v−γ

∫ v

vinj

(v′)
γ

[f (−∞, v′) + fS (v′)]
dv′

v′
. (7.38)

Upstream from the shock (x < 0) the spatial distribution is given by

f (x, v) = f (−∞, v) + [f (0, v) − f (−∞, v)] exp

(∫ x

0

V1dx′

κ1 (x′, v, A/Q)

)

. (7.39)

Here, it is assumed that a single parameter κ1 describes diffusion along the shock
normal upstream from the shock. The diffusion parameter depends in general on
speed, through the level of turbulence at the location x, and on speed v.
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In Equation (7.38), the injection speed vinj is introduced. For v > vinj, the
downstream diffusion speed is equal to the upstream convection speed V1, i.e. all
particles convected into the shock are scattered back:

(κ̃ · ∇f)x = V1f → κ‖

rG

(

cos2 θ + κ⊥ sin2 θ/κ‖

)

= V1 . (7.40)

In this way, the downstream gradient scale rG adjusts to balance a stationary
situation at the shock. At high speeds the spatial diffusion parameter becomes
large (κ → ∞) and thus the gradient scale is large rG → ∞. The lower the speed,
the smaller is κ, but rG cannot be smaller than the gyroradius rg or some other
characteristic value. For v = vinj the gradient scale rG reaches its smallest value;
for v < vinj the diffusive acceleration no longer operates with full efficiency.

The diffusive streaming anisotropy is (Giacalone and Jokipii, 1999):

δ :=
|3κ̃·∇f |

vf
=

3V1

v

[

1 +

(

κA/κ‖

)2
sin2 Ψ +

(

1−κ⊥/κ‖

)2
sin2 Ψcos2 Ψ

[(

κ⊥/κ‖

)

sin2 Ψ + cos2 Ψ
]2

]1/2

. (7.41)

If this anisotropy is small, then the Parker equation (7.1) can be applied and
diffusive first-order Fermi acceleration operates as derived. It can be argued here
whether the upstream or the downstream diffusion parameters must be entered to
ensure that δ be small. As the downstream parameters of κ̃2 are larger than those
of κ̃1, we tend to use κ̃2 as a more stringent constraint.

7.B MHD-description of solar wind turbulence

The following derivation of the magnetohydrodynamic (MHD) model of plasma
turbulence follows closely the work by Zhou and Matthaeus (1990). The properties
of the plasma are described by the proton mass density ρ (X, t), the plasma veloc-
ity V (X, t), and the magnetic field B (X, t). We distinguish large scales X and
fluctuation scales x and assume incompressibility. We have the mass continuity
equation, the induction equation with diffusive term D′, vanishing divergence of
the magnetic field B, and an equation of motion:

ρ̇ = −∇ · (ρV) , Ḃ = ∇× (V × B) + D′, ∇ · V = 0, ∇ · B = 0,

ρ
[

V̇ + (V · ∇)V
]

= −∇p + J × B + D, (7.42)

where p is the mechanical plasma pressure, and J = µ0∇×B is the electric current
density. Alternative forms of the equation of motion and the equation of induction
without the dissipation terms are

DV − (µ0ρ)
−1

(B · ∇)B = −ρ−1∇pT , pT = p + µ−1
0 B2 ,

DB − (B · ∇)V = − (∇ · V)B , D := ∂t + V · ∇ . (7.43)

We decompose the plasma properties into a mean part, typically varying on a spa-
tial scale that corresponds to the heliocentric radial coordinate R, and a turbulent
inertial part, typically ranging in spatial scale over more than three decades from
a correlation scale Lc � R down to the thermal ion gyroscale:

V=U + v, B=B0 + b, ρ=ρ0 + δρ, pT =pT
0 + δpT, D := ∂t + U·∇. (7.44)
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It is assumed that the fluctuating part of the turbulence part is incompressible, i.e.
δρ = 0, an assumption which is not necessarily true but is made in many models on
solar wind MHD-turbulence. The average 〈...〉 of a turbulent component vanishes,
while the average of the product of two turbulent components does not vanish in
general. Averaging of the equations of motion and induction yields

DU + 〈(v · ∇)v〉 − (µ0ρ)
−1

[(B0 · ∇)B0 + 〈(b · ∇)b〉] = −ρ−1
0 ∇pT

0 ,

DB0 + 〈(v · ∇)b〉 − [(B0 · ∇)U + 〈(b · ∇)v〉]
− [(∇ · U)B0 + 〈(∇ · v)b〉] = 0. (7.45)

The difference between Equations (7.43) and (7.45) yields

Dv + (v · ∇)U − (µ0ρ)
−1

[(B0 · ∇)b + (b · ∇)B0] = −ρ−1∇δpT + Nv;

Db + (v · ∇)B0 − (B0 · ∇)v − (b · ∇)U = − (∇ · U)b − (∇ · v)B0 + Nb;

Nv = − [(v · ∇)v − 〈(v · ∇)v〉] + (µ0ρ)
−1

[(b · ∇)b − 〈(b · ∇)b〉] ;
Nb = − [(v · ∇)b − 〈(v · ∇)b〉] + [(b · ∇)v − 〈(b · ∇)v〉] . (7.46)

We have neglected non-averaged products of “small” variables v and b. In a similar
fashion one obtains

∇ · ρv = 0 . (7.47)

7.B.1 Description of MHD turbulence by Elsässer variables

Using the Elsässer variables

z± = v ± 1√
µ0ρ

b (7.48)

Equations (7.46) become

∂z±

∂t
+ (U ∓ VA) · ∇z± +

1

2

(

z± − z∓
)

∇ ·

(

U

2
± VA

)

+z∓ ·

(

∇U ± 1√
µ0ρ

∇B0

)

= −1

ρ
∇p + N±

0 ;

N±
0 = Nv ± 1√

µ0ρ
Nb . (7.49)

In Nb the term (∇ · v)b− 〈(∇ · v)b〉 has been set to zero because the turbulence
is assumed to be incompressible, i.e. (∇ · v) = 0.

The above equation is derived in the following way:

∂v

∂t
± 1√

µ0ρ

∂b

∂t
=

∂z±

∂t
;

(U · ∇)v ± 1√
µ0ρ

(U · ∇)b = (U · ∇) z± ∓ b (U · ∇)
1√
µ0ρ

;

(v · ∇)U ± 1√
µ0ρ

(−b · ∇)U =
(

z∓ · ∇
)

U ;
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− (B0 · ∇)

µ0ρ
b ± 1√

µ0ρ
(−B0 · ∇)v = ∓ (VA · ∇) z± + b (VA · ∇)

1√
µ0ρ

;

(b · ∇)B0 ±
1√
µ0ρ

(v · ∇)B0 = ± 1√
µ0ρ

(

z∓ · ∇
)

B0 . (7.50)

The first line is valid because ρ̇ = 0 (δρ = 0 or ρ = 〈ρ〉). The last term of the
fourth line yields

b (VA · ∇)
1√
µ0ρ

=
b√
µ0ρ

(B0 · ∇)
1√
µ0ρ

=
1

2

(

z± − z∓
)

(±∇ · VA) (7.51)

because ∇ · B0 = 0.
The last term of the fourth line and the term ± (∇ · U)b/

√
µ0ρ remaining from

the second equation in (7.46) are added:

∓b (U · ∇)
1√
µ0ρ

± b (∇ · U)√
µ0ρ

=
1

2

(

z± − z∓
)

(

∇ ·

U

2

)

because of
U

ρ
· ∇ρ = −∇ · U i.e. ∇ · (ρU) = 0 . (7.52)

7.B.2 Assumptions for the solar wind turbulence

We now mainly follow the work by Zank et al. (1996a). With VA � U , the
equations reduce to

∂z±

∂t
+ U · ∇z± +

1

2
z±∇ ·

U

2
+ z∓ · M = NL± + S±

M =

[

∇⊗ U − 1

2
1̃∇ ·

U

2

]

. (7.53)

The dissipation and source terms on the r.h.s of the first line are somewhat rewritten
and will be evaluated later.

In order to obtain an equation for the evolution of turbulent power, one needs
to multiply the above equation by z± and to average over small scale fluctuations.
The tensor M is then a contraction tensor for the Elsässer variables z±Mz∓.
However, the heliosphere will usually be described in heliocentric coordinates, while
the Elsässer variables refer to a coordinate system that is fixed to the heliospheric
magnetic field, which in the most simple approach is described by a Parker spiral
with Parker angle Ψ of the magnetic field with respect to the radial direction of
the heliosphere. Therefore the contraction M needs to include the coordinate
transformation from heliocentric coordinates to the coordinate system aligned to
the large-scale heliospheric magnetic field. This is done by a rotation

O =





cos Ψ 0 sin Ψ
0 1 0
− sin Ψ 0 cos Ψ



 (7.54)

We can reduce the mathematical effort by constraining ourselves to certain sym-
metries of turbulence. Three types of turbulence are most often discussed in the
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literature: (1) isotropic turbulence, (2) turbulence in slab geometry with the fluc-
tuation amplitudes v and b perpendicular to the ambient magnetic field B0 and
the wave vector k parallel to B0, and (3) the so-called 2D-MHD turbulence (Bieber
et al. (1996) with k ⊥ B0 and v and b mutually perpendicular to both k and B0

but isotropic distribution of the wave vectors in the plane orthogonal to B0. This
enables us to introduce projection matrices PS and P2D for symmetric and slab/2D
turbulence, respectively, in the frame aligned with B0:

PS =
1

3





1 0 0
0 1 0
0 0 1



 ; P2D =
1

2





0 0 0
0 1 0
0 0 1



 . (7.55)

The action of the contraction tensor MB and the projection tensor P2D;B needs to
be transformed from the coordinate system aligned to B0 to the heliocentric coor-
dinate system, where the contraction tensor is denoted by MH and the projection
tensor P2D;H:

z
±;T
B PT

2D;BMBz∓B = z
±;T
B OTOPT

2D;BOTOMBOTOz∓B = z
±;T
H PT

2D;HMHz
±;T
H

z
±;T
H = z

±;T
B OT ; PT

2D;H = OPT
2D;BOT ; MH = OMBOT ;

PT
2D;H =





sin2 Ψ 0 sin Ψ cos Ψ
0 1 0
sin Ψ cos Ψ 0 cos2 Ψ



 . (7.56)

The superscript T denotes a transposed tensor. The subscripts H and B at the
Elsässer variables denote the heliocentric coordinate system and that aligned with
the ambient magnetic field B0, respectively. We derive the tensor MH (Equation
7.53) in heliocentric coordinates:
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∂Ψ
. (7.57)

After multiplying the contraction term by z± and averaging over the short fluctu-
ation scales, we obtain

(

1

3

U

2r
− 1

3

1

2

∂U

∂r

)

〈z− · z+〉 =: MS 〈z− · z+〉 (7.58)

in the case of isotropic turbulence and
[

cos2 Ψ

2

(

U

r
− ∂U

∂r

)

+
1

2

∂U

∂θ
+

1

2 sin θ

∂U

∂Ψ

]

〈z− · z+〉 =: M2D 〈z− · z+〉 (7.59)
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for the 2D and the slab case, if 〈z±i z∓j 〉 = 0 for i 6= j Zank et al. (1996a).

By multiplying Equations (7.53) for the evolution of z+ and z− by z+ and z−,
respectively, we obtain two equations

1

2
D′

〈(

z±
)2〉

+MS/2D

〈

z−·z+
〉

= S±+D±, D′ =

(

∂

∂t
+∇ ·

U

2
+U ·∇

)

, (7.60)

where S and D denote source and dissipation terms and D′ is a differential operator.
Multiplying Equation (7.53) for z+ by z− and that for z− by z+ and adding the
resulting equations yields

D′
〈

z− · z+
〉

+ MS/2D

[

〈 (

z+
)2 〉

+
〈 (

z−
)2 〉

]

= Sm + Dm. (7.61)

The Elsässer variables z± are related to kinetic and magnetic energy Ev and
Eb and to the cross helicity HC through

E = Ev + Eb =
1

4

[

〈 (

z+
)2 〉

+
〈 (

z−
)2 〉

]

; ER = Ev − Eb =
1

2

〈

z− · z+
〉

;

HC =E+−E− =
1

4

[

〈 (

z+
)2 〉

−
〈 (

z−
)2 〉

]

. (7.62)

Therefore, Equations (7.60) and (7.61) represent

D′ (Ev + Eb) + 2MS/2D (Ev − Eb) =
1

2

(

S+ + S− + D+ + D−
)

,

D′ (Ev − Eb) + 2MS/2D (Ev + Eb) =
1

2
(S1 + D1) , (7.63)

where the difference of these two equations describes the evolution of Eb and the
sum the evolution of Ev. In the case of constant Alfvén ratio rA = Ev/Eb, the first
equation can be written as

D′Eb + 2MσDEb = S′ + D′ with σD = (rA − 1) / (rA + 1) . (7.64)

We introduce the parameter Γiso = 2MisoσD for the contraction term of isotropic
turbulence (7.58) and Γ2D = 2MS/2DσD for slab/2D turbulence (7.59):

Γiso = −1

3
σD > 0 and Γ2D = −σD cos2 Ψ > 0 , (7.65)

where Ψ is the angle between the magnetic field and the plasma flow.

With the parameter Γ, Equation (7.64) takes the form

D′′Eb = S′ + D′ ; D′′ =

(

∂

∂t
+ ∇ ·

U

2
+ U · ∇

)

− Γ
U

r
(7.66)

for a stationary flow.
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7.B.3 Dissipation

Now we need to incorporate the source and dissipation terms. Rather than going
through a detailed treatment of the dissipation terms, we use the dimension and
scale invariance arguments of von Karman and Howarth (1938, see also Matthaeus
et al., 1996):

∂v2

∂t
= −α

v3

lc
+ S ,

∂lc
∂t

= βv , v2lα/β
c = const. , (7.67)

where S is the source term. The dissipation is assumed to depend on a typical
length scale lc (correlation length) of the turbulence and on the third power of the
speed. If α and β are dimensionless parameters, the above equations have terms
of equal dimensions. As is easily verified, the solutions of the above equations are

v (t) = v0 [1 + A (t − t0)]
−α/(α+2β)

,

lc (t) = lc;0 [1 + A (t − t0)]
2β/(α+2β)

, A−1 =
2

α + 2β

lc;0
v0

. (7.68)

For t � A−1, these solutions are power laws. The typical behaviour of a fluctuating
variable is that v2 (t) → t, and thus α = 2β. As the scales for lc and v can be
changed independently, we should have A−1 = lc;0/v0, and thus α + 2β = 2. This
yields α = 1 and β = 1/2.

We transfer the above principle to the case of expanding hydromagnetic systems
by postulating that

D′
(

Ebl
2
c

)

= 0 ⇒ l2cD′Eb + 2lcEb (∂t + U · ∇) lc = 0 ⇒

−E
3/2

b

lc
+ S + 2lcEb

(

∂

∂t
+ U · ∇ + Γ

U

r

)

lc = 0 ⇒
(

∂

∂t
+ U · ∇ + Γ

U

r

)

lc =
E

1/2

b

2lc
− Slc

2Eb
. (7.69)

The second line follows because the term ∇ · U/2 is only applied once as a scalar,
while for the other differential operator the product rule has to be used. The third
line follows from Equation (7.66).

For a stationary situation, we have the set of equations:

(

∂

∂t
+ ∇ ·

U

2
+ U · ∇− Γ

U

r

)

Eb = −E
3/2

b

lc
+ S ;

(

U · ∇ + Γ
U

r

)

lc =
E

1/2

b

2
− lcS

2Eb
. (7.70)
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