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Abstract

In situ mineralogical and chemical analyses of rock samples using a space-prototype laser ablation ionization mass
spectrometer along with unsupervised machine learning are powerful tools for the study of surface samples on
planetary bodies. This potential is demonstrated through the examination of a thin section of a terrestrial rock
sample in the laboratory. Autonomous isolation of mineral phases within the acquired mass spectrometric data is
achieved with two dimensionality reduction techniques: uniform manifold approximation and projection (UMAP)
and density-preserving variation of UMAP (densMAP), and the density-based clustering algorithm Hierarchical
Density-Based Spatial Clustering of Applications with Noise (HDBSCAN). Both densMAP and UMAP yield
comparable outcomes, successfully isolating the major mineral phases fluorapatite, calcite, and forsterite in the
studied rock sample. Notably, densMAP reveals additional insights into the composition of the sample through
outlier detection, uncovering signals from the trace minerals pyrite, rutile, baddeleyite, and uranothorianite.
Through a grid search, the stability of the methods over a broad model parameter space is confirmed, revealing a
correlation between the level of data preprocessing and the resulting clustering quality. Consequently, these
methods represent effective strategies for data reduction, highlighting their potential application on board
spacecraft to obtain direct and quantitative information on the chemical composition and mineralogy of planetary
surfaces and to optimize mission returns through the unsupervised selection of valuable data.

Unified Astronomy Thesaurus concepts: Time-of-flight mass spectrometry (2222); Laser ablation (2245);
Dimensionality reduction (1943)

1. Introduction

In the context of space exploration, the efficient and effective
management of data acquisition and data transmission is a
fundamental necessity. As scientific missions continue to
expand our understanding of the solar system and beyond,
the importance of unsupervised operation and sophisticated
data reduction techniques is growing. Optimal utilization of
limited onboard resources enhances the scientific return of
space missions. Both automation as well as data reduction are
feasible with machine learning (ML), and while ML has
become a state-of-the-art data analysis technique on Earth,
space-based ML applications are still rare. Space missions
operate in highly challenging environments under severe
computational constraints. Radiation-hard onboard hardware
is expensive and therefore often very limited in its capacity,
complicating the use of ML in space. Additionally, the high
cost of failure of space missions puts further constraints on the
reliability of onboard software, which should under no
circumstances pose a threat to the spacecraft’s core operations,
station keeping, and maintenance (V. Kothari et al. 2020).

Nonetheless, interest in the field of in situ ML applications is
rapidly growing because ML offers the autonomy for space-
craft that is highly sought after. Any task that can be
autonomously performed without interaction from Earth saves
time and increases the chance of valuable data collection, as
most spacecraft have limited lifetimes due to component

degradation, consumable depletion, or budgetary constraints
(A. McGovern & K. L. Wagstaff 2011). Mission return can
further be improved with ML through autonomous categoriza-
tion of high- and low-quality data on board the spacecraft prior
to data transmission. This helps mitigate downlink limitations
due to factors like spacecraft distance from Earth, antenna size,
transmitter power, selected frequency band, data priority, and
mission duration. Certain ML techniques, including k-means
and support vector machines, were deemed resilient enough to
withstand the Earth's orbit environment without the need for
rad-hard memory (K. L. Wagstaff & B. Bornstein 2009;
F. Gieseke et al. 2012). Further development of ML techniques
less sensitive to bit flips will ease the application of ML in
space.
To date, ML in space research has primarily been applied to

postanalyses of space-acquired data, and far less during space
operations. In space, ML is currently more prominently used
for spacecraft operation than for onboard scientific data
analysis. Examples for in situ applications include image
classification on Mars rovers, navigation, landing, and
autonomous target selection (R. Castano et al. 2006; M. Bajr-
acharya et al. 2008; A. E. Johnson et al. 2015; R. Francis et al.
2017; B. Gaudet et al. 2020; N. Abcouwer et al. 2021). Further
applications lie predominantly in the field of Earth-orbiting
satellites (R. Castano et al. 2005), or robotics, where processes
are automatized with artificial intelligence (R. Doyle et al.
2021). In particular, CubeSats and microsatellites provide an
optimal test bed for ML applications in space due to their
relatively low cost of failure compared to larger satellites
(G. Mateo-Garcia et al. 2021; D. A. Zeleke & H. D. Kim 2023).
To date, two ESA missions (OPS-SAT and f-Sat-1) have been
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launched with the aim of performing onboard ML analyses
(G. Giuffrida et al. 2022; G. Labreche et al. 2022).

Supervised and reinforcement learning techniques dominate
current ML applications in space. However, as the acquired data
often lack labels, and manual label assignment is resource
intensive, the demand for unsupervised techniques is growing
(E. Kalinicheva et al. 2020; M. Shirobokov et al. 2021). In
unsupervised ML, only the data themselves are used as input to
the model, without any corresponding labels. The goal is to
uncover patterns present within the data by grouping similar
samples (clustering), finding the distribution of data within the
input space (density estimation), or projecting high-dimensional
data into a lower dimensional space (dimensionality reduction)
(M. C. Bishop 2006). Unsupervised ML has been tested
successfully on resource-limited hardware (V. Růžička et al.
2022). Various onboard unsupervised ML applications have been
proposed, including an approach based on k-means and t-SNE for
the autonomous detection of satellite fault diagnosis (S. K. Ibrahim
et al. 2020). Further applications include dimensionality reduction
techniques for health monitoring of satellites (T. Yairi et al. 2017)
or applications during swarm missions (J. C. Davis & H. J.
Pernicka 2020). In general, a significant rise of ML applications on
spacecraft in the future is apparent (S. Kumar & R. Tomar 2019;
A. Russo & G. Lax 2022).

This study presents an example of how unsupervised ML
techniques could be used on board future space missions to
enhance mission return. The goal is to filter data on board the
spacecraft, selecting and transmitting only relevant data while
discarding uninteresting or low-quality information.

2. Approach

A possible outline of the described procedure for data
reduction is shown in Figure 1. This procedure will be
presented in greater detail in subsequent sections of the paper.

The procedure commences with data collection on a rover,
lander, or other spacecraft equipped with, e.g., a mass
spectrometric instrument (Figure 1, panel (1)). To mimic the
process as closely as possible, data in this study were collected
from a geological thin section using a space-prototype laser
ablation ionization mass spectrometer (LIMS). Subsequent data
preprocessing reduces data complexity and noise through
computationally inexpensive techniques like averaging, low-
pass filtering, and downsampling or mass integration (Figure 1,
panel (2)). Next, a dimensionality reduction technique based on
unsupervised ML is employed to find a low-dimensional
embedding of the data aimed at the autonomous isolation of
mineral phases, grouping similar samples in close proximity
(Figure 1, panel (3)). This embedding, represented as a low-
dimensional matrix (embedding dimensions × number of
samples), might be transmitted to Earth for an initial
assessment of data diversity. From the embedding, feedback
on parameter selection as well as chemical composition can be

retrieved, in addition to the identification of possible outliers.
On Earth, clustering of the embedding can be carried out with
fewer computational constraints, allowing for a more thorough
analysis of clustering stability (Figure 1, panel (4)). The
number of retrieved clusters should ideally reflect the number
of sampled minerals with a distinct chemical composition. The
obtained labels can then be sent back to the spacecraft to
choose representative spectra for each cluster or histogram data
from the clusters, which reflect the chemical composition of
similar spectra (Figure 1, panel (5)). Alternatively, clustering
may be performed directly on the spacecraft. Transferring the
representative spectra to Earth enables the identification of
various mineral phases present within the sampled material
(Figure 1, panel (6)). This then allows the minerals of interest
to be selected, and the data of interest can be downloaded faster
as the uninteresting data can be discarded beforehand.
In this paper, two dimensionality reduction techniques,

uniform manifold approximation and projection (UMAP) and a
density-preserving variation of UMAP (densMAP), were
applied to the collected data (L. McInnes et al. 2018; A. Nar-
ayan et al. 2021). A comparative analysis explores the
respective advantages and limitations of the two methods and
discusses their relevance to space research. Subsequently, the
clustering algorithm Hierarchical Density-Based Spatial Clus-
tering of Applications with Noise (HDBSCAN) was employed
to identify and label distinct clusters within the embedding.
While UMAP has previously been applied to LIMS data

(R. R. Lukmanov et al. 2021, 2022), the application of
densMAP as a density-preserving dimensionality reduction
technique is novel. In this contribution, both techniques are
compared, along with an evaluation of different levels of data
preprocessing. Furthermore, a grid search was performed
across a broad parameter space to assess clustering stability.
Special emphasis is put on the impact of data preprocessing and
parameter selection on the analysis outcome, as it is necessary
to anticipate situations where limited computational resources
prevent iterative parameter tuning. Determining suitable levels
of preprocessing and model parameter selection can be
challenging, given the absence of straightforward criteria to
evaluate the validity of unsupervised ML models. To validate
the clustering results, a comparative analysis was performed
with information from both optical microscopy and element
maps of the integrated data to establish the ground truth of the
data set. This approach enables the manual isolation of
chemically distinct phases, reflecting the objective of the ML
approach.

3. Data Collection

3.1. LIMS Instrument

The LIMS instrument used in this study is a miniature space-
prototype. This specialized instrument was built at the

Figure 1. Pipeline for onboard ML analysis. (1) Data are collected on board a spacecraft. (2) Subsequently, the data are preprocessed on board the spacecraft. (3)
Dimensionality reduction techniques can be used to embed the collected data into a low-dimensional space. (4) Clustering of the embedded data groups them
according to their similarity in chemical composition. (5) Spectra of each cluster can be histogrammed to obtain a representative spectrum with greater dynamic range.
(6) Analysis of the representative spectra allows for mineral identification and trace element detection.
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University of Bern, with its initial design aimed at in situ
investigations of chemical and isotopic surface compositions of
celestial bodies in our solar system. The LIMS instrument
consists of a compact (160 mm × ∅ 60mm) reflectron-type
time-of-flight mass analyzer, a chirped pulse amplification
(CPA)-2110 femtosecond laser system (λ= 258 nm,
f = 1 kHz, τ ~ 180 fs pulse duration; Clark-MXR, Dexter MI,
USA) and a microchannel plate (MCP) detector system coupled
to a U5303A high speed analog-to-digital converter (ADC)
(12 bit, 3.2 GS s−1; Acqiris SA, Switzerland). The operation of
the LIMS instrument involves the generation of positively
charged ions through laser ablation, followed by their guidance
through the mass analyzer via ion optical elements and their
detection with the MCP detector system. The analytical
capabilities of the LIMS instrument extend to both chemical
imaging of surfaces and three-dimensional depth profiling. The
instrument reaches sensitivities for the abundance of chemical
elements down to the lower parts per million level (weight
fractions), while offering spatial resolutions at the micrometer
scale laterally and submicrometer scale vertically. The sche-
matics and principles of operation are illustrated in Figure 2.
Further details of the instrument can be found in previous
publications (U. Rohner et al. 2003; V. A. Riedo et al. 2013;
V. Grimaudo et al. 2015, 2017; A. Neubeck et al. 2016; M. Tulej
et al. 2021). To enhance the ion yield and reduce the risk of
isobaric interferences of polyatomic species with element
species, the laser system of the LIMS instrument was operated
in double pulse (DP) mode (M. Tulej et al. 2018; A. Riedo et al.
2021).

3.2. Materials

Data were collected from a thin section of an ultramafic
phoscorite rock from the Phalaborwa Carbonatite Complex,
located in the Limpopo Province, South Africa (S. C. Eriksson
1984; L. M. Heaman 2009; S. Decrée et al. 2020).
Phoscorite is a rare plutonic ultramafic rock predominantly

associated with carbonatite both spatially and temporally,
forming a multiphase phoscorite-carbonatite series. The
essential rock-forming minerals of phoscorite are typically
defined as olivine (commonly serpentinized), apatite, and
magnetite (H. D. Russell et al. 1954; S. C. Eriksson 1984;
N. I. Krasnova et al. 2004; L. Milani et al. 2017). Olivine is a
solid-solution series with the end-members forsterite and
fayalite, defined by the stochiometric formula of (Mg,
Fe)2SiO4. The olivine in the phoscorite is typically forsteritic
(Fo79–Fo91) and contains sub–parts per million concentrations
of rare-earth elements (REEs). Only a few minor elements
exceed tens of parts per million concentrations, with Mn being
the most abundant among them (L. Milani et al. 2017). Apatite
(Ca5(PO4)3(F, Cl, OH)) is the dominant constituent of the rock
sample. Apatite in carbonatites is enriched in REEs, with the
degree of enrichment being contingent on the formation
conditions.
Optical images of the studied fluorapatite thin section are

shown in Figure 3. Sample preparation for in situ element
analyses encompassed surface polishing, fixation of the thin
section with epoxy on a glass plate, and subsequent application
of a thin gold layer, approximately 10 nm thick, via sputter
coating (Figure 3, panels (A) and (B)). This thin conductive
layer helps mitigate charge buildup and improves spectral
quality (S. Gruchola et al. 2023). When held against a light
source, the thin section is transparent even with the gold layer
applied (Figure 3, panel (B)). The location of the studied area is
marked with red dots.
Optical microscopy images of the thin section taken with a

Zeiss optical microscope are shown in Figure 3, panels (C)–
(K), obtained with transmitted plane-polarized light (PPL;
panels (C) and (E)), reflected cross-polarized light (XPL;
panels (G) and (J)), and transmitted XPL (panels (D), (F), (H),
and (K)). The sampled area is marked with a red rectangle.
Images shown in panels (G)–(K) were taken after LIMS
measurements. Panels (J) and (K) show close-ups of two
visibly distinct regions of the sampled area. The thin section
was rotated under transmitted XPL light to find the optical axis
of the fluorapatite, shown in Figure A1 in Appendix A.
The sampled area was further analyzed with scanning

electron microscopy (SEM) and energy-dispersive X-ray
spectroscopy (EDX) using a Zeiss Gemini SEM 450 instrument
located at the Department for Chemistry, Biology, and
Pharmacy at the University of Bern. The SEM-EDX element
maps for C, P, Ca, O, Mg, and Si are shown in Figure 4, panels
(A)–(F). A composite map of the six elements is shown in
panel (G). Even though the sample was gold coated, the gold
layer was partially removed during LIMS analysis, leading to
charging effects during SEM-EDX analysis and lower spatial
resolution of the image shown in Figure 4, panel (G).
Nevertheless, regions of different chemical compositions are
discernible. EDX spectra of selected locations together with an
SEM image of the sampled area can be found in Appendix A,
Figure A2.

Figure 2. Schematics and principles of the operation of the LIMS instrument.
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3.3. Measurement Campaign

This step in the data collection and analysis procedure
corresponds to Figure 1, panel (1). An area of
600 μm × 600 μm was sampled at 20× 20 different locations
with a pixel size of 30 μm. At each location, a total of 450 laser
bursts were applied with a burst count of 96 single laser shots
(43,200 laser shots applied per position). Data obtained in a
burst were summed up during acquisition and stored in one
single time-of-flight (TOF) spectrum. In accordance with the
number of laser bursts applied per location, 450 TOF spectra
were obtained per location.

The laser system was operated in DP mode (M. Tulej et al.
2018; A. Riedo et al. 2021), with laser pulse energies of
E1= (1.89 0.01) μJ and E2= (2.19 0.01) μJ for the first and
second laser pulses applied to the sample surface, respectively.
The time delay between the two pulses was set to 70 ps. The
laser craters, remnants of the laser ablation process, are visible
in Figure 3, panels (G)–(K). The plane of polarization of the
linearly polarized laser beam was oriented at an angle of
approximately 40°–50° with respect to the optical axis of the
fluorapatite crystal (see Figure A1).

The sampled area comprises distinct mineral phases, i.e.,
solids with distinct chemical compositions and physical
properties, each characterized by a distinct coloration, as
evidenced in Figure 3. Notably, the uppermost region of the
studied sample area, which appears blurred in the optical
microscopy images (Figure 3, panels (G) and (J)), corresponds
to the edge of the thin section that partially broke off during
polishing. Nevertheless, it was decided to sample this region of
the rock due to the occurrence of other mineral phases apart
from the known primary component, fluorapatite. Based on
optical microscopy analysis, the remaining part of the thin
section is predominantly composed of fluorapatite. The
acquisition of data from multiple mineral phases was
imperative for the subsequent ML analysis.

Through the measurement of matrix-matched reference
materials, the data can be quantitatively analyzed using
element-wise correction with relative sensitivity coefficients

(RSCs). These coefficients account for various factors like
element dependence on laser wavelength, ionization potentials,
and matrix effects, which affect signal intensities and cause
nonstoichiometric representation of species in the raw mass
spectra (M. B. Neuland et al. 2016). RSCs are comparable to
calibration factors of other quantitative instrumentation, such as
k-ratios for EPMA and energy-dispersive X-ray spectroscopy
(EDS) analyses (R. G. Hurley & R. L. Goss 1978; X. Llovet
et al. 2021) and H-values for PIXE analyses (J. A. Maxwell
et al. 1995), which are used to correct the measured intensities
to obtain quantitative results. Given the potential divergence
between measured and actual compositions, selecting appro-
priately matched reference materials requires consideration of
contextual factors, such as other mineral phases present and
formation conditions. While a quantitative composition
analysis represents a potential extension of the current study,
it was not its primary objective, and the subsequent ML
analysis can be performed using both corrected and uncorrected
data. Consequently, no reference materials were subjected to
measurement.

4. Data Analysis

The goal of using unsupervised ML for the analysis of an
LIMS data set is to autonomously cluster the recorded spectra
based on their chemical composition. While it is technically
possible to use raw data for ML analysis, it is rarely advisable.
Raw data often includes irrelevant features, which can hinder
clustering effectiveness. Therefore, extracting, selecting, or
enhancing relevant features through data preprocessing is
crucial for improving clustering outcomes. Additionally, the
performance of the ML model can be significantly influenced
by the choice of parameters.
The following sections outline the data analysis procedure,

beginning with data preprocessing (corresponding to Figure 1,
panel (2)), followed by ML analysis (corresponding to
Figure 1, panels (3) and (4)). Different levels of preprocessing
are applied to the initial data set to assess the impact of

Figure 3. Optical (microscopy) images of the sampled fluorapatite thin section. (A)–(B) Sample glued on glass plate, with gold layer visible (A) and transparency of
thin section highlighted (B). The red dots mark the location of the sampled area. (C)–(F) Optical microscopy images taken with transmitted plane-polarized light (PPL;
C, E) and cross-polarized light (XPL; D, F). The sampled area is marked with a red rectangle. (G)–(H) Sampled area after LIMS measurements, taken with reflected
PPL (G) and transmitted XPL (H). An area of 600 μm × 600 μm was sampled at 20 × 20 different locations with a pixel size of 30 μm. (J)–(K) Close-up images
taken with reflected PPL (J) and transmitted XPL (K) of two visibly distinct regions of the sampled area.
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preprocessing on clustering effectiveness. Clustering stability is
evaluated through a grid search over a broad parameter space.

4.1. Data Preprocessing

From the raw LIMS data, three processed data sets labeled
DS1, DS2, and DS3, with increasing levels of preprocessing,
were generated to study the influence of preprocessing on the
clustering stability. For a summary of preprocessing steps
applied to DS1–DS3, please refer to Table 1. The preproces-
sing pipeline is visualized in Figure 5. The individual steps are
explained in detail in the following, in order of application (if
applied). Run times for the individual preprocessing steps on
the currently used workstation (Intel Core i7-9700, 3.00 GHz
base frequency, eight cores, 16 GB RAM) are summarized in
Appendix C, Table A3.

4.1.1. Averaging of Data

In a first step of data preprocessing, the total number of
recorded TOF spectra was reduced from 180,000 to 400 by
averaging spectra at each location. Spectra recorded in bursts
1–50 from each site were discarded due to crater formation that
occurs during the first few thousand laser shots, which reduces
spectral quality (R. Wiesendanger et al. 2018). The remaining
bursts per location, 51–450, were averaged, yielding one
representative spectrum for each location. Summation of bursts

increases signal-to-noise ratios (SNRs), which increases the
chance of identifying species with low abundances and hence
serves as feature enhancement. Furthermore, a smaller data set
size speeds up subsequent preprocessing steps and the ML
procedure.

4.1.2. Baseline Correction

Spectral data contain a baseline signal, which is not related
to the actual sample but results from background noise or
instrument drift. Baseline correction helps to subtract this
unwanted background and makes it easier to detect and analyze
peaks, especially those of low intensity.

4.1.3. Low-pass Filtering

SNRs can be further increased through low-pass filtering of
the spectral data, where signals with a frequency higher than a
selected cutoff frequency are attenuated.

4.1.4. Downsampling

The recorded raw TOF spectra consist of 64,000 initial
features each (20 μs acquisition time at a sampling rate of
3.2 GS s−1). For ML to work efficiently, the number of features
needed to be reduced significantly, ideally without compromis-
ing relevant features. Downsampling the signal by a factor ofM
approximates the signal as if it were acquired at a sampling rate

Table 1
Preprocessing Steps Applied to Averaged LIMS Data, Resulting in Three Differently Processed Data Sets

Processing Function Data Set #1 (DS1) Data Set #2 (DS2) Data Set #3 (DS3)

Averaging Yes Yes Yes
Baseline correction No Yes Yes
Low-pass filtering No Yes Yes
Data reduction Downsampling Downsampling Mass integration
Log transformation No Yes Yes
Normalization No Yes (1–100) Yes (1–100)
# Features 280 (mass 5–240) 280 (mass 5–240) 240 (mass 1–240)

Note. Downsampling of DS1 and DS2 was performed with a factor of 100, meaning that every 100 consecutive features were averaged and stored as one.

Figure 4. SEM-EDX element maps (accelerating voltage: 10 kV, probe current: 1.5 nA, magnification: 100×, backscattered electron detector). (A)–(F) Element maps
of C, P, Ca, O, Mg, and Si, respectively. The corresponding emission lines are indicated in each panel. (G) Composite map of the six elements.
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M times lower. Here, M= 100 was chosen, meaning that every
100 consecutive features were averaged and stored as one. This
approach has the advantage that it is fast and does not require
prior knowledge of the TOF spectra. However, a disadvantage
arises due to the quadratic relationship between the time and
mass domains, resulting in a higher density of features in the
lower mass range than in the higher mass range. This
imbalance gives greater weight to the lower mass range during
subsequent clustering analysis.

Features up to 4.2 μs (m/z of 5) were discarded due to
significant electronic noise present at the beginning of each
TOF spectrum. Features up to a mass-to-charge ratio (m/z) of
240 were selected, as no mass peaks were detected or are of
interest at higher m/z values, which resulted in a total of 280
features per data sample.

4.1.5. Mass Integration

Unlike downsampling, mass integration reduces the number
of features in the mass domain. This method has the advantage
of assigning equal weight to each mass value. Although mass
integration can be performed directly in the time domain, it is
still necessary to determine the mass calibration constants,
which requires mass calibration of at least one TOF spectrum.
These calibration constants need to be recalculated if the
analysis is conducted under different instrument settings.

Mass peak integration was performed according to S. Meyer
et al. (2017) using integer mass integration. Each integer mass
was integrated using Simpson’s rule for numerical integration.
Since features up to an m/z of 240 were selected, each mass-
integrated data sample consisted of 240 features.

4.1.6. Log Transformation

While the major components of the studied minerals
dominate the mass spectra, minor peaks can also contain
valuable information. To ensure that these less abundant
species contribute more meaningfully to the subsequent ML
analysis, a base-10 log transformation was applied. This
transformation increases the relative weight of the minor
peaks, balancing their influence with the more dominant
spectral components.

4.1.7. Normalization

The data samples were normalized to a range of 1–100,
ensuring uniformity across the data set. This normalization
facilitates easier comparison between data samples and
enhances compatibility with data from other data sets when
needed.

4.2. Dimensionality Reduction and Clustering

Two dimensionality reduction algorithms, UMAP and
densMAP, were applied to the preprocessed data. Both
algorithms aim to find a low-dimensional embedding while
preserving local and global data structure. Similar samples are
grouped together based on a selected metric. In this study, the
cosine metric was selected, as it was found to generally provide
better results than the default Euclidean metric and has been
previously applied to cluster LIMS data (R. Lukmanov et al.
2022). Samples correspond to spectra in the data set with peak
intensities as features. A sample with N features (e.g., N= 240
in DS3) can be thought of as a vector in N-dimensional vector
space. Mass spectra obtained from the same mineral exhibit a
similar peak pattern and hence similar features. In contrast,
spectra obtained from distinct minerals with different chemical
compositions display different peak patterns with less similar-
ity. UMAP and densMAP therefore group the samples into
clusters with similar chemical compositions.
DensMAP uses a modified version of the UMAP cost

function to incorporate density information. The “local radius,”
i.e., the density around each point in the high-dimensional
space, is added as an additional parameter to find a density-
preserving low-dimensional embedding of the data. Unlike
UMAP and the widely used t-SNE method, where the cluster
size is dominantly influenced by the number of data points in
the cluster, densMAP defines cluster size based on the variance
of the samples within a cluster (A. Narayan et al. 2021). Dense
regions of the original data remain dense in the low-
dimensional densMAP embedding, and sparse regions remain
sparse. While UMAP focuses on preserving structure, dens-
MAP builds on UMAP and preserves both structure and
density, making it useful when the relative density of the data is
important for interpretation. The added complexity for
preserving density makes densMAP computationally slower
than UMAP.
After dimensionality reduction with UMAP or densMAP,

the density-based clustering algorithm HDBSCAN was used to
isolate clusters within the embedding. HDBSCAN can identify
clusters of different shapes and sizes and is particularly useful
for data sets with irregular cluster structures and variable
cluster densities (Campello et al. 2013; L. McInnes et al. 2017).
The same label is assigned to all spectra within a cluster.
Additionally, HDBSCAN assigns a probability measure to the
samples, reflecting their degree of membership within their

Figure 5. Pipeline of preprocessing steps applied to raw TOF data, resulting in
three differently processed data sets DS1, DS2, and DS3.
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assigned cluster, normalized to the range from zero to one.
Outliers that were not assigned to a cluster receive the label −1
and a probability of zero (L. McInnes et al. 2017). The
probability measure is strongly influenced by cluster density.

Both dimensionality reduction and clustering are influenced
by parameter selection. For dimensionality reduction, the most
impactful parameters are the metric, n_components (the
number of dimensions in the low-dimensional embedding),
min_dist (the minimum distance allowed between points in the
low-dimensional embedding), and n_neighbors (the size of the
local neighborhood used to compute the data structure). These
parameters are summarized in Table A1 in Appendix A, along
with their default values and valid parameter ranges. Similarly,
for HDBSCAN, the parameters found to be most influential are
min_samples (the minimum number of points required to form
a core cluster point. A point is considered a core point if it has
at least min_samples other points within its reach) and
min_cluster_size (the minimum number of points required to
form a cluster).

UMAP and HDBSCAN were employed in previous LIMS
studies on a 1.88 Ga old metasediment from the Gunflint
formation (R. R. Lukmanov et al. 2021, 2022), where distinct
clusters representing the host material (chert), organic material
from embedded microfossils, and other minor minerals were
retrieved. Notably, the emphasis in these earlier investigations
was on achieving optimal separation between chemically
distinct groups, which involved extensive efforts in parameter
selection for the ML analysis, as well as rigorous data cleaning
and preprocessing prior to applying the ML procedure.

4.3. Histogramming and Mineral Identification

To identify the mineral phases represented by the retrieved
cluster, a representative spectrum may be selected for
comparison with spectra from known minerals. Alternatively,
summed histograms from the spectra within a cluster may be
generated for comparison (corresponding to Figure 1, panel
(5)). Summed histograms offer the advantage that they
summarize information from several spectra, improving SNRs.
However, clusters may comprise spectra that were assigned
with a low probability, as they may contain signals from
different phases, particularly in the case of spectra recorded at
the boundary between two phases. Consequently, summed
histograms may provide a less distinct representation of the
actual cluster composition, which can challenge the
identification.

Once the representative spectra have been selected, they can
be used to identify the corresponding mineral phase by
analyzing the element composition (corresponding to
Figure 1, panel (6)). For an analysis performed in space, the
representative spectra (either summed or randomly selected
spectra from clusters) can be transmitted, which then provide
an overview over the distinct chemistry that is present in situ,
while corresponding to a significant reduction in data volume
needed for obtaining such an overview.

5. Clustering Stability

The clustering stability is influenced by both data preproces-
sing and parameter selection for the ML models. Suboptimally
selected parameters can yield a poor clustering, even for well-
processed data. The same applies to poorly processed data with
optimally chosen parameters. As parameter selection is a

crucial step in unsupervised ML, there are different approaches
to validate the clustering quality, which differ if labels are
available (with ground truth) or not (without ground truth)
(A. Baraldi et al. 2005; J. J. Ha et al. 2011).
For the given analysis, labels were not initially given, but as

the clustering was supposed to separate the data based on the
chemical composition, analyzing said composition allowed for
the definition of ground truth labels. When ground truth is
available, extrinsic methods can be used to assess clustering
quality, which assign a score, Q(C, Cg), to a clustering, C,
given the ground truth, Cg (J. J. Ha et al. 2011).
Using this score, the influence of model parameter selection

and data preprocessing on the cluster association was assessed,
aiming to identify stable approaches that are applicable in
environments where iterative parameter adjustments for
improving model outcomes are limited or impossible, e.g., on
board a spacecraft.
In the following, the determination of the ground truth labels

as well as the definition of the scoring function are presented.

5.1. Ground Truth

To evaluate the autonomously obtained clustering outcome,
clusters were manually established as a reference, the so-called
ground truth of the data set. In this context, the objective is to
categorize the data set through clusters that reflect distinct
chemical compositions.
Manual cluster assignment was performed using the

chemical composition obtained from the optical microscopy
images (Figure 3, panels (G)–(K)), the SEM-EDX element
maps (Figure 4), and LIMS element maps (Figure 6, panels
(A)–(E)). The microscopy images show the presence of four
major distinct regions that also show up in the element maps of
both EDX and LIMS. Based on this information, the
chemically distinct regions were determined, and the derived
ground truth is summarized in Figure 6, panel (F). Manual label
assignment was only possible due to the rather small size of the
data set. Minor mineral phases can also be identified from the
element maps, as exemplified in panel (B) of Figure 6 for Zr,
where enrichment is evident approximately in the middle of the
sampled area. However, such minor phases were not
individually marked as distinct phases in Figure 6, panel (F),
as the major phases are prominently evident in the concerned
regions. The unsupervised ML technique is expected to identify
the same chemical composition patterns.

5.2. Scoring Function

To assess the quality of a clustering, a scoring function was
defined as follows:

( )= +
Q

N N
N

. 1C O

Here, N is the total number of samples (the size of the data set),
NC is the number of correctly labeled samples, and NO is the
number of samples labeled as outliers. To determine NC, the
clustering is compared to the ground truth. The function is
defined in a way to ensure that samples labeled as outliers
would not contribute to the count of wrong labels, unless two
or more phases were primarily labeled as outliers, hindering
phase separation. This approach avoids penalizing the model
when a small number of outliers is found, as they may entail
information about small mineral inclusions. Such minerals
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might be present in single locations only; however, one single
sample cannot form a cluster and will therefore not be assigned
an individual label, but rather be labeled as an outlier.

For spectra acquired from regions where two or more
mineral phases are in contact, labels from all neighboring
phases are accepted. Spectral signatures from multiple phases
may be present in a border sample, and a clear assignment to a
single phase is not feasible. If two or more clusters that should
remain separate according to the ground truth get merged, all
labels from the corresponding clusters, including any outlier
labels, will be considered wrongly assigned. When phases are
isolated but split into subclusters, only the biggest subcluster
will be considered correctly assigned. In the special case where
all samples were to be labeled as outliers, which could occur
due to highly unfavorable parameter choices, the score would
be assigned a value of zero. None of the tested parameter sets
resulted in this particular case.

Minor differences between autonomously and manually
assigned labels are to be expected, as neither clustering can be
achieved with absolute certainty. Apart from spectra obtained
from border regions of mineral phases, discrepancies can
typically be attributed to suboptimal model parameter selec-
tions. This can cause underclustering, i.e., the merging of
chemically distinct phases, or overclustering, i.e., the separa-
tion of phases that demonstrate a high degree of chemical
homogeneity. Examples for poor cluster assignments as well as

cluster assignments containing outliers are given in Figure A3
in Appendix A.
The possibility that the ground truth may not be entirely

accurate needs to be considered, as this would impact the
effectiveness of comparing the autonomously obtained cluster-
ing to the manual one using the scoring function defined in
Equation (1). However, considering that the chemical compo-
sition is depicted by the element maps, which reflect the data
used as input for the clustering algorithm, clustering outcomes
that reveal patterns significantly distinct from those observed in
the element maps are not anticipated.

5.3. Grid Search

After having defined the ground truth and a scoring function,
the influence of parameter selection on the quality of clustering
was assessed. Parameter selection is a crucial step for
unsupervised ML methods, and the stability of a clustering
with respect to parameter selection can be controlled through
grid searches across the parameter space. Furthermore, this
approach helps to identify parameters that exert a substantial
impact on the clustering and distinguish them from parameters
that have little to insignificant influence on the results.
Grid searches can be computationally expensive, as the same

computations are rerun many times with slightly adapted
parameters. Especially in resource-limited environments, grid

Figure 6. Element maps (panels (A)–(E)) and sampled location numbers colored according to chemically distinct regions (panel (F)). Peak intensities of each element
were normalized across the sampled area. x-axes and y-axes tick marks help guide the eye to find the sampled location in the grid of 20 × 20 locations.
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searches might be impossible or limited; hence, suitable
parameter estimation for new, unseen data becomes crucial.
Alternatively, preparatory steps such as parameter testing on,
e.g., synthetic data in environments with fewer resource
constraints can be taken.

Table A1 in Appendix A presents a summary of the UMAP
and densMAP parameters min_dist, n_neighbors, and
n_epochs, and the HDBSCAN parameters min_samples and
min_cluster_size that were varied during the conducted grid
search. A total of 7596 parameter sets were tested. The
explored parameter space is summarized in Table A2 in
Appendix A. These parameters play a crucial role in shaping
the data embedding and subsequent clustering. They are
interdependent, with embedding quality influencing cluster
isolation. All parameter sets were tested on the three data sets
DS1–DS3, offering further insights into the influence of
preprocessing on clustering stability. The grid search was
conducted both with UMAP and densMAP. Due to computa-
tional constraints, not all parameter values were varied in
relation to one another; instead, each target parameter was
tested across a consistent set of combinations for the other
parameters to observe specific trends efficiently.

6. Results and Discussion

6.1. Data Embedding and Clustering

The retrieved two-dimensional densMAP embedding for
data set DS3 is shown in Figure 7, panel (A). When clustering
this embedding using HDBSCAN, the samples are assigned a
label, depicted with different cluster colors in Figure 7, panel
(B). As each data point in the embedding corresponds to a
sampled location, the sampled area can be colored according to
the retrieved labels, as shown in Figure 7, panel (C). For the
given data set, four clusters were retrieved, pointing toward the
presence of four distinct mineral phases.

In the low-dimensional embedding (Figure 7, panel (B)),
outlier samples are marked. These samples are only loosely
connected with their associated cluster. While denser clusters
might initially seem preferable, detection of outliers is of great
interest, as they provide additional constraint into the
mineralogy of a rock sample. Their loose association with
specific clusters suggests the presence of spectral signatures
similar to those of other samples in the cluster. However, they
must in addition contain spectral signatures that set them apart.
Consequently, these outliers commonly indicate the presence

of minor mineral phases in the sampled material. Locations can
be retrieved from Figure 6, panel (F).

6.2. Phase Identification

The next step in the analysis sequence concerns the
identification of the mineral phases of each of the retrieved
clusters. For this, a representative mass spectrum was selected
from each cluster and is displayed in Figure 8, panels (A)–(D).
The corresponding cluster areas are indicated in small inserts in
the upper-right corners. By analyzing the element species
present in the mass spectra combined with educated guesses
about which minerals are likely to co-occur, the clusters were
identified as fluorapatite (A), forsterite (B), and calcite (C). The
last spectrum (D) shows contributions from both calcite and
fluorapatite, but as previously discussed, this region corre-
sponds to the edge of the thin section analyzed under a
nonoptimal laser focus, reflected by the low spectrum intensity.
No further detailed analysis will be conducted for this region.
Fluorapatite is the only F-bearing rock-forming mineral

containing O, P, and Ca without significant amounts of other
elements. Minor traces of Cl were also found below the percent
level, supporting the identification of fluorapatite with minor
contributions of chlorapatite. Apatite is the most ubiquitous
phosphate mineral found in sedimentary, igneous, and
metamorphic rocks (P. M. Ihlen et al. 2014; M. Ouabid et al.
2021). Although apatite is usually just an accessory mineral, it
can be a major rock-forming mineral in certain rocks, including
phoscorites and carbonatitic rocks. In phoscorites, inclusions of
carbonatite are very common, as shown in Figure 8, panel (C).
The carbonatite phase is calcite. Phoscorites may further
contain olivine and magnetite, and the composition of panel (B)
(major Mg, Si, and O, with some Ca and minor Na, and K)
strongly suggests the presence of olivine. The absence of Al
rules out phlogopite, and the low Fe content is indicative of the
dominance of the forsterite component in the olivine. Olivine
contains minor amounts of Ca, which is common in olivine
crystallized in a carbonatite melt (G. Libourel 1999). Minor
chondrodite might be present because of the F-rich melt. The
detected forsterite crystal has the approximate dimensions of
400 mμm × 120 μm. No magnetite has been detected.
Closer analysis of the outlier spectra found in the densMAP

embedding (see Figure 7, panel (B)) corresponding to locations
118, 149, 168, 169, 170, 350, and 399 reveal the presence of
minor mineral phases. These include pyrite (FeS2, locations
169 and 170), rutile (TiO2, locations 168 and 169), baddeleyite

Figure 7. Data embedding using densMAP (A). The first two densMAP dimensions are shown. Subsequently, the embedding was clustered using HDBSCAN (B).
Outliers are marked with the respective sampled location. Panel (C) shows the sampled area colored according to the retrieved HDBSCAN labels.
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(ZrO2, locations 149 and 170), and uranothorianite ((Th, U)O2,
locations 350 and 399, minor traces in 118 and 170). Mineral
phases detected from the corresponding mass spectra are shown

in Figure 9, panels (A), (B), and (D). Additionally, mass peaks
of REEs (Ce, La, Pr, Nd) detected primarily in the fluorapatite
region are displayed (Figure 9, panel (F)), in addition to Sr and

Figure 8. Identification of major mineral phases and minor inclusions. Selected mass spectra for the four major clusters. (A) Location 203. (B) Location 151. (C)
Location 126. (D) Location 41. Major peaks are labeled. Note the different y-axis ranges.

Figure 9. Isotope patterns found in mass spectra labeled as noise spectra, as well as Sr, Ba, and REEs.
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Ba primarily found in the carbonatitic phase (Figure 9, panels
(C) and (E), respectively). For spectrum numbers, see Figure 6,
panel (F). These spectra contain spectral signatures of trace
mineral phases, which provide geological and geochemical
information on the formation processes of the host rock
and preserve crucial information on its geological history
(S. Ferrero & R. J. Angel 2018; W. M. White 2020). If such an
analysis were to be conducted on board a spacecraft,
transmitting spectral data that includes both major and trace
element information would be immensely informative for the
remote exploration of other planetary bodies.

If the data presented in this study were collected on a
spacecraft, four spectra would have to be sent back for the four
major phases, and three to four spectra for the interesting
locations that were found containing spectral signatures of
minor mineral phases. These seven to eight spectra give a
complete overview of the encountered mineralogical complex-
ity of the rock sample, corresponding to a significant reduction
in data volume. If technically feasible, the subsequent
transmission of raw data associated with clusters of interest
could substantially enhance the collection of valuable data.

Modern spacecraft provide a service called “selective
downlink” of data that would serve this purpose. However, to
apply this approach on board a spacecraft to respective data,
modifications would need to be undertaken to adapt the method
to perform well on resource-constrained hardware. If onboard
storage will suffice to keep the raw data alongside the
processed data until after clustering has been performed, the
clustering can be used to identify regions of interest on the
studied sample. Subsequently, more data could be collected
from these interesting regions and transmitted as raw spectra
for more detailed analysis.

6.3. Comparison of UMAP with DensMAP

Clustering results obtained both with UMAP and densMAP
for data set DS3 are presented in Figure 10 in panels (U1) and
(D1), respectively. The retrieved embeddings are color coded
by HDBSCAN labels. Figure 10, panels (U2) and (D2), show
the sampled area colored according to the corresponding
HDBSCAN probabilities for UMAP and densMAP, respec-
tively. The sampled area, colored according to HDBSCAN
labels, is identical for both methods and agrees with Figure 7,
panel (C). The same model parameters were used to obtain the
embeddings (n_components = 3, metric = cosine, min_d-
ist = 0.1, n_neighbors = 50, n_epochs = 2500), as well as the
HDBSCAN clustering results (min_samples = 5, min_clus-
ter_size = 20). A detailed description of these parameters is
given in Table A1 in Appendix A.

The comparison of the embeddings obtained with UMAP
and densMAP reveals a high degree of agreement, with a total
of four clusters retrieved and identical cluster labels assigned.
A more prominent distinction emerged in the sizes of the
clusters. Specifically, the UMAP-derived embedding
(Figure 10, panel (U1)) yielded clusters with higher densities
compared to the corresponding embedding obtained with
densMAP (Figure 10, panel (D1)). The correlation between
cluster size and number of associated samples is much more
apparent in the UMAP-generated embedding than in the
densMAP-generated one. This has a direct impact on the
associated HDBSCAN probabilities, as samples in denser
clusters tend to be associated with a higher probability, with the
corresponding clusters compared to samples in more dispersed

clusters. This can be directly observed in Figure 10, panels
(U2) and (D2), respectively. Hence, the higher cluster densities
in the embedding obtained with UMAP lead to higher overall
clustering probabilities compared to densMAP. Higher prob-
abilities do not necessarily imply a more accurate embedding,
as they are influenced by cluster density. As only densMAP
preserves density, the probability parameter of the density-
based clustering algorithm HDBSCAN seems to have less
significance in combination with UMAP compared to
densMAP.
Another notable difference between the UMAP and

densMAP embeddings is the presence of outliers in the latter,
which consequently appears noisier than the UMAP embed-
ding, where clusters are densely packed. While denser clusters
might initially seem preferable, detection of outliers is of great
interest, as they provide additional insights into the mineralogy
of a rock sample, as previously discussed. As outliers scatter far
from their associated cluster, the corresponding HDBSCAN
probabilities are low as well (see Figure 10, panel (D2)). In the
corresponding panel for the UMAP embedding (Figure 10,
panel (U2)), certain locations with lower probabilities coincide
with those detected as outliers with densMAP. Finding spectra
with spectral signatures of different mineral phases using
UMAP can therefore not be completely ruled out. However, in
this particular case, certain interesting locations found with
densMAP, such as 350 and 399, could not be retrieved
with UMAP.
Spectra acquired from regions situated between two different

minerals may encompass signatures from both phases. These
spectra, along with those with minimal or no signal intensity,
may be less reliably embedded and only loosely attached to a
cluster, resulting in low HDBSCAN probabilities. This is
particularly evident in most spectra of the dark-blue cluster in
the uppermost region of the sampled area (Figure 10, panels
(U2) and (D2)). During sample preparation, this edge region of
the rock partially broke off while polishing the surface, leaving
it uneven. The thin section was positioned such that the main,
flat area was in optimal laser focus, while the uneven edge
region was not. Since the laser focus was not adjusted
throughout the measurement campaign, the edge region was
sampled outside the optimal laser focus. This resulted in
predominantly low-intensity spectra and consequently lower
HDBSCAN probabilities.

6.4. Validation of the Clustering Stability

To validate that the obtained clustering results are not
specific to the selected parameters but can be reproduced over a
broad parameter space, the clustering stability was assessed
through a grid search. The score function defined in
Equation (1) was used to quantify the clustering quality.
Simultaneously, the influence of preprocessing on clustering
quality was studied.
The model parameters selected for the grid search include

the UMAP/densMAP parameters min_dist, n_neighbors, and
n_epochs, and the HDBSCAN parameters min_samples and
min_cluster_size. The parameters are summarized and
described in Table A1 in Appendix A. The explored parameter
space is summarized in Table A2 in Appendix A.
Grid search results are summarized in Figure 11. A total of

7596 parameter sets were evaluated. Each panel in Figure 11
displays mean scores achieved for a selected parameter for
combinations with the other four parameters, both for UMAP
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(upper panels) and densMAP (lower panels). A corresponding
figure displaying the HDBSCAN probabilities instead of mean
scores is presented in Appendix A, Figure A4.

6.4.1. Stability Over Parameter Space

The clustering score is stable over a large parameter space,
with drop-offs occurring toward the higher end of the searched
space for the parameters min_dist and min_cluster_size
(Figure 11, panels (A1) and (A2), and (E1) and (E2), toward
the lower end of the searched space for n_neighbors (Figure 11,
panels (B1) and (B2)), and on both ends of the searched space
for min_samples (Figure 11, panels (D1) and (D2)). The score
shows no trend with the parameter n_epochs (Figure 11, panels
(C1) and (C2)). The score drop-offs occur due to under-
clustering (the loss of clusters through merging) or over-
clustering (more clusters identified than what might be
considered meaningful or reflective of the underlying struc-
ture). Examples for under- and overclustering are provided in
Figure A3 in Appendix A, panels (D1) and (D2), and (C1) and
(C2), respectively.

When min_dist is set too high, clusters in the low-
dimensional embedding become more dispersed, leading to
increased separation between points and a loss of local
structure. This results in reduced cluster compactness, resulting
in merged or overlapping clusters in the embedding, and hence
leads to underclustering (Figure 11, panels (A1) and (A2), and
Figure A3, panels (D1) and (D2)). If n_neighbors is set to a too
small value, the embedding may focus excessively on local
structures, leading to increased sensitivity to noise and
fragmentation of clusters. This can result in the identification
of many small, disconnected groups while overlooking larger,
more meaningful patterns in the data (Figure 11, panels (B1)
and (B2), and Figure A3, panels (C1) and (C2)). If
min_samples is set too low, the algorithm may create overly
dense, disconnected clusters leading to overclustering
(Figure 11, panels (D1) and (D2)). Conversely, if set too high,
more points may be classified as noise, resulting in larger
clusters and potentially missing smaller significant groups
(underclustering). Underclustering also occurs for too large
values of min_cluster_size, as the algorithm may overlook
smaller, meaningful clusters, resulting in fewer, larger clusters
(Figure 11, panels (E1) and (E2)).

Figure 10. Clustering results of the dimensionality reduction analyses using UMAP (U1) and densMAP (D1) for data set DS3. The corresponding UMAP and
densMAP embeddings are shown using the first two UMAP and densMAP dimensions, respectively (i.e., X_UMAP refers to the first UMAP dimension). Panels (U2)
and (D2) show the sampled area colored according to the assigned HDBSCAN probabilities, with mean probabilities annotated in the lower-left panel corner.
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Optimally, for an analysis conducted on board a spacecraft,
the obtained embedding could be transferred to Earth, where
various parameter values for min_samples and min_cluster_-
size could be tested to find an optimal clustering. Alternatively,
the data embedding could be rerun with different parameters on
board the spacecraft. Overall, low scores were predominantly
encountered toward extreme parameter choices, e.g.,
min_dist> 0.1, n_neighbors< 10, min_samples> 20, and
min_cluster_size> 30. For moderate parameter choices, the
overall clustering exhibited a high level of stability.

6.4.2. Stability with Respect to Preprocessing Levels

Mean scores demonstrate a correlation with data-preproces-
sing levels, reflecting the impact of the noise level on the
clustering. Higher preprocessing levels (DS1→DS2→DS3)
reduce noise and homogenize data more efficiently, yielding
higher scores. While mean scores obtained with DS2 and DS3
show similar parameter dependencies (e.g., Figure 11, panel
(C1)), reflecting their similar preprocessing levels, including
noise reduction through low-pass filtering, DS1 received
overall lower scores (e.g., Figure 11, panel (A1)). The lower
mean scores and lower score stabilities for DS1 suggest model
sensitivity to noise independent of parameter selection.
Figure 11, panel (C1), shows that the score does not depend
on the selection of n_epochs but has a strong dependence on
preprocessing levels as values obtained for DS1 are overall
lower and less stable than for the other two data sets. Therefore,
poor data preprocessing can only be remedied to a limited
extent with optimal parameter selection, while well-processed
data shows more resilience toward suboptimal parameter
selection.
Table 2 summarizes the number of parameter sets yielding

scores95% with both UMAP and densMAP for the three data
sets DS1, DS2, and DS3. The total scores depict the mean
scores obtained for a data set, independent of the dimension-
ality reduction technique. Higher preprocessing levels gener-
ally yield scores95% for more parameter sets. DS1, with the
least amount of preprocessing, yielded overall very low scores,
particularly when analyzed with densMAP. No low-pass
filtering or other noise reduction was applied to DS1; therefore,
the data remained relatively noisy compared to DS2 and DS3.
As densMAP takes the variance of the samples into account
when constructing the embedding, a higher dependence on
noise for densMAP than UMAP is expected. For data with low
SNRs, UMAP is therefore expected to yield more stable results.
The decision whether to apply UMAP or densMAP to a data
set is therefore case dependent. Conversely, DS3, with the
highest preprocessing level, achieved the highest overall scores
with densMAP. This highlights the stability of the method
when coupled with effective data set preprocessing. DS2,
despite being downsampled like DS1 and not mass integrated
like DS3, achieved more similar scores to DS3. This is
noteworthy, as log transformation, applied to DS2 and DS3 and
aimed at giving low-abundant species more weight in the
clustering process, simultaneously gives noise values more
weight, which could potentially have a negative impact on the
results. Although not encountered in this study, this needs to be
kept in mind, especially when working with low SNR data.
The comparison with Figure A4 in Appendix A portraying

the same grid search as in Figure 11, but evaluated using the
HDBSCAN probability measure, reinforces the claim made
previously, that the probability parameter of HDBSCAN

Figure 11. Summary of the grid search. Mean scores are shown for all three
data sets DS1–DS3, with UMAP (upper panels) and densMAP (lower panels).
The x-axis labels indicate the varied parameter (A: min_dist, B: n_neighbors,
C: n_epochs, D: min_samples, and E: min_cluster_size).
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appears to have less significance when combined with UMAP
rather than with densMAP. Overall, the probabilities obtained
with UMAP are higher than with densMAP; however, this does
not necessarily imply that UMAP embeddings are more
accurate, as revealed by a comparison with the obtained
scores. The probability measure displays less variability across
the different parameters, creating a misleading sense of
stability, as low scores were still obtained even when mean
probabilities were high.

To validate the approach, a cross-check with another data set
was performed and can be found in Appendix B. A run-time
analysis was conducted for the various preprocessing and ML
steps and can be found in Appendix C, with results presented in
Table C1. This analysis showed that being economical by
limiting preprocessing does not pay off as mean scores
obtained for DS1 were rather low, while total processing times
per spectrum are only slightly faster compared to DS3.

7. Conclusion

The acquisition of data from space is often limited by
downlink rates, and transmitting data that is of low quality or
not of interest reduces mission return. Prefiltering of data on
board spacecraft optimizes the use of limited resources such as
onboard storage and time. This study presents a possible
analysis approach for mass spectrometric data collected on
board spacecraft from geological samples using unsupervised
ML for autonomous mineral phase separation with the
objective to improve mission return.

Data were acquired from a thin section of a terrestrial rock
containing different mineral phases dominated by fluorapatite
using a space-prototype LIMS instrument. The collected data
were preprocessed and subsequently dimensionality reduced
and clustered. This approach autonomously isolated four major
clusters, which were then identified as the mineral phases
fluorapatite, calcite, and forsterite-rich olivine, as well as a
region corresponding to the edge of the thin section. In
addition, outliers corresponding to minor mineral phases,
present in single locations, were found and identified as pyrite,
rutile, baddeleyite, and uranothorianite.

The separation of the data into distinct groups and their
subsequent identification through the selection of representa-
tive mass spectra provides a preview of the diverse miner-
alogical compositions and mineral distributions of the studied
thin section. Allowing for the detection, localization, and
identification of major and minor phases through the analysis
of only a handful of mass spectra corresponds to a significant
reduction in data volume. For the current study, only four
spectra are required for the identification of the major mineral
phases. The application of the given or a similar analysis
technique would therefore be useful on a spacecraft, particu-
larly when looking for low-abundant features. If a distinction

between spectra of high and low interest could be achieved
already on the spacecraft, downlink capacity limitations would
become less problematic and onboard storage could be
optimized.
The clustering stability was assessed through a grid search

over a broad parameter space, and the influence of data
preprocessing, the dimensionality reduction technique, and
parameter selection was analyzed. Through a parallel manual
chemical composition analysis, the ground truth was deter-
mined to score the clustering. Testing the approach on three
data sets with different levels of preprocessing demonstrated
that higher levels of preprocessing stabilize the clustering
results over a larger parameter space. A significant difference in
clustering stability was observed between data that underwent
noise reduction and homogenization steps, such as low-pass
filtering and baseline correction, and data that did not, with the
latter yielding less stable clustering results. As these data-
preprocessing steps are computationally much less expensive
than dimensionality reduction and clustering, saving a
relatively small amount of time through very minimal
preprocessing is not advised.
The best results were achieved with a mass-integrated data

set (DS3), for which preprocessing took only slightly longer
than for the corresponding downsampled data set (DS2).
However, for a corresponding analysis conducted on board a
spacecraft, communication with the spacecraft would be
required to mass calibrate data, potentially slowing down the
analysis significantly. In such a case, downsampling of the data
might be preferred, at the cost of slightly lower clustering
stability. For analyses conducted on Earth, however, mass
integration of the data is the preferred method. The grid search
showed that, for mass-integrated data, the clustering results are
more stable over a broad range of parameters compared to
downsampled data. The stability of the method was further
tested on an additional data set, where phase isolation was
successfully achieved using the same preprocessing approach
as for DS3. For much larger data sets, the adaptation of certain
parameters is anticipated.
This study demonstrated that using the clustering algo-

rithm HDBSCAN on data reduced with UMAP or densMAP
has effectively isolated the major mineral phases. Minor
mineral phases were only found when using densMAP. As
densMAP is a density-preserving algorithm that considers the
variance of data samples within a cluster when constructing
the embedding, corresponding cluster densities were found to
be lower compared to UMAP. This is an advantage for outlier
detection, but a disadvantage for data exhibiting low SNRs,
as densMAP is more sensitive to noise. As log transformation
of the data increases the weight of noisy values on the
clustering outcome, this preprocessing step can become
problematic when coupled with densMAP for data exhibiting
small SNRs. Depending on the data set at hand, one of the
other methods may be preferred. It also needs to be noted that
densMAP, being an extension of UMAP, is computationally
more resource intensive.
For the future, the development of a computationally less

expensive clustering approach applicable on resource-con-
strained hardware should be pursued. Furthermore, studies
with supervised models might be considered as well. For
instance, a model could be trained on Earth on a subset of
data collected on a spacecraft and later used on board to

Table 2
Number of Parameter Sets Yielding Scores �95% in Conducted Grid Search

Data Set UMAP densMAP Total

DS1 24% 8% 16%
DS2 47% 49% 48%
DS3 55% 83% 69%

Note. Total scores correspond to mean scores obtained for a data set,
independent of UMAP or densMAP. Scores are rounded to integer precision.
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directly classify the remaining data. No onboard training
would be required.
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Appendix A

Figure A1 shows optical microscopy images of the
fluorapatite thin section taken with transmitted cross-
polarised light (XPL) at different angles of orientation.
Figure A2 shows an SEM image of the sampled area and the

different chemical compositions of four different regions
marked on the sample can be deduced from the EDX spectra
shown. Table A1 summarizes the main UMAP, densMAP
and HDBSCAN parameters that were varied in this work,
giving a description of the parameters together with their
default and possible values. Table A2 summarizes the
parameter space explored in the grid search. Values are
given for the varied parameters min_dist, n_epochs,
n_neighbors, min_samples, min_cluster_size, and densmap.
Figure A3 shows a selection of different embeddings and
cluster assignments of the sampled region for different ML
parameter sets. The choice of parameters strongly influences
the clustering results, with suboptimal parameter choices
leading to under- and overclustering. Parameter selection also
affects the detection of outliers. Figure A4 shows the result of
the grid search for the HDBSCAN probability measure,
analogous to the scores shown in Figure 11.

Table A1
Description of Major UMAP, densMAP, and HDBSCAN Parameters

Parameter Description Possible Values Default Value

densMAP Dimensionality reduction technique (UMAP (false)
or densMAP (true))

True or false (Boolean) False

n_components Number of dimensions in the reduced space < < Î n N n1 with and #=N samples
(integer)

2

metric Metric used to compute distances in high-dimen-
sional space

Euclidean, cosine, Manhattan, Jaccard, K
(string)

Euclidean

n_neighbors Number of neighbors used for local data structure < < Î n N n1 with and #=N samples
(integer)

15

n_epochs Number of optimization iterations during
projection

Î n 0 (integer) 500 (<10,000 samples) 200 (>= 10,000
samples)

min_dist Minimum distance between points in low-dimen-
sional space

Î r 0 (float) 0.1

min_samples Minimum number of samples required in a neigh-
borhood to consider it dense

Î n (integer) “None” (same value as min_cluster_size)

min_cluster_size Minimum number of points required to form a
cluster

Î >n 1 (integer) 5

Table A2
Explored Parameters in Grid Search

min_dist n_epochs n_neighbors min_samples min_cluster_size densMAP

1, 0.9, 0.8, K, 0.1, 0.09,
0.08, K, 0.01, 0.009,
0.008, K, 0.001

500, 600, 700,
K, 3400

2, 3, 4, K, 12, 14, 16, K, 22, 25, 30,
35, K, 60, 70, 80, 90, 100, 120, 140,
K, 200, 225, 250, 300, 350, 399

1, 2, 3, K, 10, 12, 14, 15,
16, 18, K, 22, 25, 30, 35,

K, 50

2, 3, 4K, 10, 12, 14, K, 22,
25, 30, 35, K, 50

True, false
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Figure A1. Optical microscopy images of the apatite thin section taken with transmitted XPL. The angle of orientation was varied between images to find the optical
axis of the crystal. The brightest transmission is achieved around 45°, while at 90°, transmission is almost completely hindered. The angle between the laser
polarization plane of the subsequent LIMS measurements and the optical axis was between 40° and 50°. The optical microscopy images in this figure were taken prior
to LIMS analysis.
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Figure A2. SEM-EDX spectra of the sampled area (accelerating voltage: 5 kV, magnification: 100x, working distance: 8.5 mm, probe current: 200 pA, backscattered
electron detector). Four regions are marked on the SEM image and the corresponding EDX spectra are shown below the SEM image.
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Figure A3. Selection of different embeddings (left panels) and corresponding cluster associations of the sampled areas (right panels) for various ML parameter sets.
The parameters (min_dist, n_epochs, n_neighbors, min_samples, min_cluster_size) were chosen as follows. A1–A2: 0.1, 2500, 40, 15, 5; B1–B2: 0.01, 1500, 20, 5, 5;
C1–C2: 0.001, 1500, 3, 5, 5; and D1–D2: 1, 1200, 50, 5, 20. Whether UMAP or densMAP were used can be derived from the corresponding axes labels. Achieved
scores are provided. Panels (A1)–(A2) show the detection of a noise sample. Panels (B1)–(B2) and to an extremer extent (C1)–(C2) show the case of overclustering.
Panels (D1)–(D2) provide an example for underclustering.
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Figure A4. Summary of HDBSCAN probabilities obtained in the grid search. Probabilities are shown for all three data sets DS1–DS3, with UMAP (upper panels) and
densMAP (lower panels). The x-axis labels indicate the varied parameter (A: min_dist; B: n_neighbors; C: n_epochs; D: min_samples; E: min_cluster_size).
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Appendix B
Cross-check with Another Data Set

For the given data, the most stable approach for achieving
phase separation has been realized with the combination of
mass-integrated data and densMAP. To ensure that this
outcome is not a result of overfitting, where the method
performs well only on the specific data set at hand, the
approach was applied to a previously recorded data set
(M. Tulej et al. 2022). The data were obtained from the same
thin section under similar measurement conditions using the
same LIMS setup. An area of 30× 30 locations was sampled,
resulting in 900 mass spectra. The data were subjected to the
same preprocessing procedure as DS3 (see Table 1) and
embedded with densMAP.

Figure B1, panel (L0) displays the obtained densMAP
embedding, colored according to the HDBSCAN cluster
associations, whereas Figure B1, panel (P0) shows the same
embedding but color coded by the HDBSCAN probability
measure. Figure B1, panels (L1) and (P1) show the sampled
area, colored according to the HDBSCAN labels and

probabilities, respectively. The obtained clustering results are
compared to both the optical microscopy image (Figure B1,
panel (M0)) and selected element maps (Figure B1, panels
(E0)–(E3)). These provide the required information to
manually select the chemically distinct regions, as depicted in
Figure B1, panel (C0). Comparing panels (C0)–(L1) and (P1), a
high level of agreement is apparent. The HDBSCAN clustering
found a major phase (black), a minor phase (red), and outliers
(gray). Despite all outliers receiving the label −1, their local
separation into two groups (upper-right and lower-left corner in
Figure B1, panel (L1)) indicates that they are indeed two
separate phases, which aligns with the observations in
Figure B1, panel (C0). The only phase that could not be
retrieved with this procedure is a semicircular phase identified
in panel (C0) and shown in red. However, examination of panel
(P1) reveals that the corresponding spectra received low
HDBSCAN probabilities. Although better separation between
phases could potentially be achieved through parameter
refinement, the information conveyed in panel (C0) can be
fully extracted from panels (L1) and (P1). This further
highlights the stability of the method.

Figure B1. Results of the cluster analysis applied to a different data set. Panel (L0): densMAP embedding, colored according to the assigned HDBSCAN labels. Panel
(L1): sampled area colored according to the HDBSCAN labels. Panel (P0): densMAP embedding, colored according to the assigned HDBSCAN probabilities. Panel
(P1): sampled area colored according to the HDBSCAN probabilities. Panel M0: optical microscopy image under polarized reflected light. Panels (E0)–(E3): element
maps of distinct element distributions. Panel (C0): chemically distinct regions inferred from panels (M0) and (E0)–(E3).

20

The Planetary Science Journal, 5:280 (23pp), 2024 December Gruchola et al.



Appendix C

A substantial amount of data can be collected in a short
amount of time with the current acquisition system of the LIMS
instrument. However, data preprocessing and especially
dimensionality reduction can take considerably longer than
data acquisition. ML procedures are computationally quite
expensive. Here on Earth, resources are comparably unlimited,
whereas on a spacecraft, electric and computational power as
well as data storage are limited. Run times on the currently
used workstation (Intel Core i7-9700, 3.00 GHz base fre-
quency, eight cores, 16 GB RAM) are summarized in Table C1.
As a comparison, the NASA perseverance rover uses a
RAD750 chip, a variation of a PowerPC 750 with a single
core, 233MHz base frequency, and 256MB RAM (V. Verma
et al. 2022). These times give a first impression on the order of
run time and which processes are slowest. The given times are
averaged values of 1000 iterations and presented as run times
per sample. Preprocessing was performed with MATLAB, and

the embedding and clustering (UMAP/densMAP and
HBSCAN) with Python.
Preprocessing of a single spectrum took roughly 3 ms for

DS1, but around 200 and 300 ms for a spectrum of DS2 and
DS3, respectively (see Table C1). However, data preprocessing
is negligible compared to the ML analysis, taking up more than
90% of the run time for all three data sets. Especially feature
selection, downsampling, log transformation, and normal-
ization are negligible at less than 1‰ of the total run time.
HDBSCAN clustering was found to complete very quickly at
approximately 1‰ of the total run time. This can be
advantageous when clustering parameters need to be adapted
to find optimal values that do not over- or undercluster the data.
Notably, for all data sets DS1–DS3, densMAP analysis took
roughly 40% longer than analysis with UMAP, e.g., 5.1 s
compared to 3.6 s per DS1 sample with densMAP and UMAP,
respectively. Compared to that, analysis of DS1 was about 10%
faster than DS3, and approximately 3% faster than DS2.

Table C1
Run Times for the Three Data Sets and the Various Processing Steps

Process Run Time DS1 (s) Run Time DS2 (s) Run Time DS3 (s)

Baseline correction K 0.1460 (∼ )-3% 4% 0.1460 (∼ )-3% 4%
Low-pass filtering K 0.0723 (∼ )-1% 2% 0.0723 (∼ )-1% 2%
Mass calibration K K 0.0184 (<1%)
Mass integration K K 0.0666 (∼ )-1% 2%
Feature selection 0.0002 (<1‰) 0.0002 (<1‰) K
Downsampling 0.0024 (<1‰) 0.0024 (<1‰) K
Log transformation K 0.0001 (<1‰) 0.0001 (<1‰)
Normalization K 0.0001 (<1‰) 0.0001 (<1‰)
UMAP | densMAP 3.5755 (∼99%) | 5.1167 (~99%) 3.6471 (∼94%) | 5.2371 (~96%) 3.7082 (∼92%) | 5.3147 (~95%)
HDBSCAN (U | D) 0.0056 (∼ )1‰ | 0.0054 (∼ )1‰ 0.0060 (∼ )1‰ | 0.0056 (∼ )1‰ 0.0053 (∼ )1‰ | 0.0053 ( )~1‰
Total (U | D) 3.5837 (100%) | 5.1247 (100%) 3.8742 (100%) | 5.4638 (100%) 4.017 (100%) | 5.6235 (100%)

Note. “(U | D)” refers to run times for UMAP and densMAP, respectively.
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