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New fully kinetic model for the study of electric potential,
plasma, and dust above lunar landscapes
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Abstract we have developed a new fully kinetic electrostatic simulation, HYBes, to study how the lunar
landscape affects the electric potential and plasma distributions near the surface and the properties of lifted
dust. The model embodies new techniques that can be used in various types of physical environments

and situations. We demonstrate the applicability of the new model in a situation involving three charged
particle species, which are solar wind electrons and protons, and lunar photoelectrons. Properties of

dust are studied with test particle simulations by using the electric fields derived from the HYBes model.
Simulations show the high importance of the plasma and the electric potential near the surface. For
comparison, the electric potential gradients near the landscapes with feature sizes of the order of the Debye
length are much larger than those near a flat surface at different solar zenith angles. Furthermore, dust test
particle simulations indicate that the landscape relief influences the dust location over the surface. The
study suggests that the local landscape has to be taken into account when the distributions of plasma and
dust above lunar surface are studied. The HYBes model can be applied not only at the Moon but also on a
wide range of airless planetary objects such as Mercury, other planetary moons, asteroids, and nonactive
comets.

1. Introduction

The Moon interacts directly with its space environment due to the absence of any atmosphere and thus
does not possess an ionosphere like Earth, Venus, and Mars. The Moon does not have either any global
intrinsic magnetic field, contrary to Earth, Mercury, and the giant planets.

The direct plasma-surface interaction makes the Moon an ideal object for understanding various physical
processes near the surface, which are expected to take place in many atmosphere-less objects, like
asteroids and other planetary moons in the solar system, the Martian moons Phobos and Deimos, the Jovian
moons, and many others. The plasma above the lunar surface contains solar wind particles (protons and
electrons) and charged particles originating from the surface (photoelectrons); on the dayside, mainly
photoions are present but also electrically charged dust particles. The direct plasma-surface interaction
results in a charged plasma sheath above the surface, the Debye layer, and associated electric potential
and electric fields within the layer. The electric field enables charged particles, such as dust particles to

be levitated and transported over the surface. The physics within the Debye layer is an interesting topic,
because the plasma properties are affected by many factors [Kallio et al., 2012]: (1) the plasma properties of
the solar wind protons and electrons, (2) secondary particles (electrons, positively and negatively charged
ions) from the surface resulting from the impact of solar wind particles on the surface, (3) photoelectrons
from the surface at places exposed to sunlight, (4) charged dust particles above the surface, which are also
sinks and sources for ions and electrons, (5) the interplanetary magnetic field (IMF) or the magnetic field
associated with the Earth’s magnetosheath or in the magnetosphere, (6) possible local magnetic anomalies,
(7) the convective electric field associated with the flow of the solar wind or the electric field in the Earth’s
magnetosheath or in the magnetosphere, [8] the electric field within the Debye sheath, (8) the EUV light
which has variations due to the temporal variations of the Sun and due to the orbital motion of the Moon
around the Earth, (9) physical and chemical properties of the surface, which is the source of charged
particles, and (10) the three-dimensional shape of the surface, such as mountains and craters. In the

solar wind, the nominal Debye length is few meters, and it is even smaller near the lunar surface due to
photoelectrons. Therefore, many interesting plasma processes take place within a few meters above the
lunar surface.
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One of the most important reasons to develop a model that describes the electric field and the properties of
plasma and dust near the lunar surface originates from the Surveyor and Apollo missions in the 1960s and
the 1970s. Especially, photographs taken at those missions showed a horizontal glow that was interpreted
to be caused by light scattered from dust elevated above the lunar surface [see, e.g., Criswell, 1973; Rennilson
and Criswell, 1974; Zook and McCoy, 1991, and references therein]. A possible mechanism to accelerate and
transport dust particles at the Moon, and other Moon-like planetary bodies, was suggested to be electric
fields near the surface [see, e.qg., Criswell, 1973; Walker, 1973, and also references therein].

Historically, the one-dimensional (1-D) electric potential associated with pure photoelectron situation for
certain specific velocity distribution functions has been successfully derived analytically [Grard and Tunaley,
1971]. Later, a three-component plasma (solar wind electrons and protons, and photoelectrons) obeying

a Maxwellian velocity distribution function at a constant temperature was studied using 1-D analyses
[Nitter et al., 1992, 1998]. This three-component plasma model suggested that the electric potential within
the Debye layer is nonmonotonic and that a local minimum exists in the potential. This local potential
minimum has an important implication because the electric field accelerates positively charged dust
particles upward below the potential minimum and downward above. In such a potential structure a dust
particle can become trapped in the potential minimum and levitate above the surface, as illustrated in

1-D simulations [Nitter et al., 1998; Poppe and Hordnyi, 2010].

Modern computer simulations have extended the analysis to 2-D cases and to situations with
non-Maxwellian velocity distribution function. One-dimensional numeric particle-in-cell (PIC) simulations
have shown how the properties of the electric potential depend on the velocity distribution of photoelec-
trons [Poppe and Hordnyi, 20101, on the solar zenith angle (SZA) [Poppe, 2011] and on the temperature of the
solar wind and magnetospheric plasma sheet [Poppe et al., 2011, 2012a]. Furthermore, 2-D PIC simulations
have stressed how strongly 2-D surface features may affect the near-surface electric potential [Zimmerman
etal, 2011; Poppe et al., 2012b].

The previous direct 1-D and 2-D plasma-surface interaction simulations have emphasized the need for

a comprehensive generic PIC simulation that can take into account surface features, varying surface
properties and various plasma populations, and velocity distribution functions. This paper presents a new
fully kinetic electrostatic PIC model, HYBes, aimed at studying properties of plasma above the surface of the
Moon and other airless bodies in 1-D, 2-D, and 3-D. The robust new model is tailored to study in a simple
manner various surface features such as mountains or craters. Nonplanar surface shapes or reliefs may also
be combined to realistically model man-made objects, such as a spacecraft or a Moon base. The model also
permits the study of how the different physical properties of the surface may affect the solution, such as
conducting/nonconducting or sunlit/shadowed regions or regions with different photoelectron yields.

One major goal for the developed model is to study properties of dust above the lunar surface, that is,
the particle density, size and charge distribution, and the velocity distribution. However, it is not well
established how dust particles can in the first place become liberated from the surface following the
complex interplay between an upward pointing force, which exceeds the gravitational force, and a
downward pointing cohesive force between the dust particle and the surface [Hartzell and Scheeres, 2011].
Different mechanisms have been proposed that enable the release of dust particles from the surface,
such as electrostatic forces, seismic activity, and micrometeoroid bombardment [see, e.g., Hartzell and
Scheeres, 2011, and references therein]. The role of electrostatic forces has been suggested to be especially
important near the day-night terminator region that separates mostly positively charged surface of the
sunlit hemisphere and the mostly negatively charged shadowed hemisphere [Farrell et al., 2011]. High
electric potentials are also anticipated to be observed near 2-D landscapes when the solar wind flows
horizontally above a crater [Zimmerman et al., 2011]. The maximum potential drop within the Debye

layer is associated with the temperature of plasma electrons and, therefore, electrostatic forces can be
enhanced when the Moon is under the influence of a hot ambient plasma associated with solar storms

or, occasionally, when the Moon is within the Earth’s plasma sheet [Poppe, 2011].

In this paper HYBes has been used to study how the landscape morphology affects the properties of dust
above the surface once dust particles are lifted from the surface. The response of four natural landscape
features and of a landscape that mimics a man-made structure (a Moon base) to dust densities is compared
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with a flat surface case by keeping the charge of the dust particle unchanged and treating dust particles
as test particles. As shown later in the paper, the landscape affects strongly the 2-D electric potential and,
consequently, the distribution of lifted dust above the surface.

The paper is organized as follows. First, properties of the new model developed are described in detail.
Special emphasis is put on describing challenges associated with the boundary conditions and how the
simulation takes into account the different physical properties of the surface. Second, the applicability of
the model is demonstrated by deriving 1-D potential and electron density profiles for different Solar Zenith
Angles (SZA). The main morphological situations applied here are six landscape features where 2-D electric
potentials are derived. Subsequently, the obtained electric potentials are used to study how the landscapes
affect the spatial distribution of dust for two scenarios: (1) a homogeneous dust emission for the surface and
(2) for a dust point source on the lunar surface at various places.

2. Basics of the HYBes Model

The Cartesian grid structure and the macroparticle accumulation used in the HYBes are similar to those of
the HYB model that has been used in the 3-D hybrid model simulations [see Dyadechkin et al., 2013].

The HYBes model is a full particle-in-cell (PIC) model where both ions and electrons are modeled as particles.
The model uses the Cartesian staggered grid with rectangular outer boundaries as a simulation domain. The
staggered grid means that different variables are placed on different grid elements. The simulation mesh
consists of the cubic-shaped cells, and each cell, in turn, consists of six faces (which contain average values
over the face area) and a cell center (which contains the volume average value). Each cell is connected by its
faces with six neighboring cells. The simulation domain is limited by six outer edges called “walls”: +X and
—X walls, which are referred to in this paper as the front and back walls, respectively, and the +Y, =Y, -Z,
and +Z walls are referred to as the side walls.

The scalar field quantity in the simulation, the electric potential, is evaluated at the cell centers, and the
vector field quantities, the electric field and the time-independent magnetic field, are stored on the cell
faces and in the cell centers, respectively.

In the HYBes model the particles are represented by macroparticle clouds. A macroparticle, j, is character-
ized by the statistical weight (Wj), which represents the number of real particles with mass m; and electric
charge g;. In the HYBes model the weight can vary between different macroparticles. A macroparticle is
moved and accelerated like a single particle under the Lorentz force and gravitation. The macroparticles
in the HYBes model have a finite size, equal to the grid cell size. A macroparticle can be described as a
cloud of cubic shape with a uniform distribution of charge and mass. When such a macroparticle j moves,
it represents the motion of w; ions or electrons, each of them having the same speed as the macroparticle.
The electric charge, mass, and momentum of a macroparticle is accumulated into the grid by calculating
the geometrical intersection between the macroparticle and grid cells. On the 3-D mesh the contribution
of each macroparticle in a specific cell is part of the macroparticle cloud volume located inside the cell.

The HYBes model solves the following equations for particles and fields:

dv,; . F
e,i _ qe,l E + Ve,- x B + gravitation ) (1)
dt m,; ’ my;
dx, ;
T =V, %)
E=-V¢, (3)
P,
Vip=-—, @)
€o

where subscript e and i denote electrons and ions, respectively.

Equation (1) is Newton'’s second law including the Lorentz force and gravitational force Fy,yiation- IN €quation
(1) m,; and q,; are the mass and charge of the particles, respectively. Equation (3) defines the electrostatic
field E, which is derived from the electric potential ¢. Equation (4) is the Poisson’s equation, where ¢ is the
electric potential, p is the total charge number density, and ¢, is the vacuum permittivity.
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The system of HYBes model equations describes the evolution of particle positions in the electrostatic
electric field E and in the magnetic field B. In the electric field the particle positions are calculated
self-consistently from their initial state while the magnetic field is assumed to be unchanged during the
simulation. The electric field is saved on cell faces and the electric field at the position of a particle is derived
from the face electric field by linear interpolation. In the HYBes model the particles are propagated with a
leapfrog algorithm and time-reversible second-order accurate Buneman scheme [Hockney and Eastwood,
1988, p. 112].

2.1. Solving Poisson’s Equation

To get the electrostatic electric field E the Poisson equation (4) is solved. In the HYBes model the Poisson’s
equation can be solved with Jacobi, Gauss-Seidel, or Successive Over Relaxation (SOR) iteration methods
[see, e.g., Jardin, 2010]. In the results presented in this paper the Jacobi iteration method is used:

1 dP? I
n+ — n n n n n n
Geipin) =\ Pli=1ipin) T Phiatiyin T Lliviy—1in T Pligi+1i) T Py ir) T Pliii-n + o /6, (5)

where n is the number of iterations per time step dt. In the runs presented in the paper, the maximum
number of iteration was chosen large enough, ny,, = 50,000, to ensure that the needed accuracy is reached.

The iteration method requires an initial ¢ value, and it is assumed that ¢° = 0 in the whole simulation
domain. The desired accuracy is obtained by continuing the iteration until the relative difference of the
solution between the new (¢"*') and the previous (¢") iteration value at each cell fulfills the criterion

¢n+1 — ¢n

T < €iteration- (6)
Here €;eration 1S the required accuracy, which is defined in the beginning of the simulation. In the runs
presented €opation Was set to 1078. The maximum number of iterations is limited by ny,,, if the required
accuracy was not reached.

2.2. Boundary Conditions

The characteristic feature of a PIC simulation is that it is computationally expensive and that the
computational costs are decreased by simulating only a small region of space covering the global
interaction region, for example, the solar wind interacting with the lunar surface. There are numerous
standard solvers for Poisson’s equation that can be used to derive electric potential from a given charge
density distribution, but the boundary conditions are often tailored for the analyzed specific problem.
Therefore, the applicability and realism of the used PIC simulation depends critically on the used boundary
conditions (BCs). The goal of this chapter is to present in detail the developed new boundary conditions and
to discuss the rationale behind the choices and developed methods.

2.2.1. Boundary Conditions: Electric Potential

The boundary conditions (BCs) are set up on the extra layers located outside of the simulation region. These
so called “ghost cells” have the same characteristics as the internal simulation cells, but they do not contain
macroparticles. Therefore, quantities derived via the accumulation process within the simulation domain
can be brought in the ghost cells only by applying boundary conditions.

The Neumann BCs are used at the boundary for the electric potential in this study. The Neumann BC
specifies the derivatives of the solution on the boundaries of the simulation domain. These derivatives are
set to zero to implement the free outflow of the plasma and electric field from the simulation. Technically
speaking, in the Neumann BC the cell-centered value of the p, is copied from the outermost cells of the
simulation box to the ghost cells.

The Jacobi iteration method (equation (5)) requires to set up the BC for the electric potential ¢» on the front
wall, the back wall, and the side walls of the simulation box.

For all simulations presented in this paper we assume that components of electric field perpendicular to
the side walls are zero, thatis, £, = Oaty = const.wallsand £, = 0atz = const. faces. Therefore, for
the side walls, the potential values are copied from the outermost cells of the simulation box to the ghost
cells. Boundary conditions for the electric potential on the front and back walls are derived from the surface
average electric fields, that are described in detail in Appendix A.
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2.2.2. Boundary Conditions: Magnetic Field

An arbitrarily oriented constant magnetic field can be set up, which will be a constant during the simulation.
The magnetic field is inserted into the center of each grid cell initially or as a constant magnetic field term
(B,) added in equation (1).

2.2.3. Boundary Conditions: Particles

The HYBes supports three different boundary conditions: absorbing, reflecting, and periodic. In the
absorbing BC, a particle is removed from the simulation box if it crosses the boundary. The reflecting BC
returns the particle to the simulation box so that the perpendicular (to the boundary) component of the
velocity of the particle is reversed. The periodic BC also returns the particles to the simulation box so that

if a particle reaches the outer boundary at, for instance, the +Y wall, it is moved to the opposite boundary,
the —Y wall, keeping the velocity unchanged. The particle BC at the boundary can be specified for each
particle population (for each type of ions and electrons) separately. The particle BC is also used to enter a
plasma into the simulation box. For this reason the macroparticles are generated with random positions in
the front cells of the simulation walls. The macroparticles in the incident flow are generated with random
positions on the inflow wall and random velocities, assuming that the entering plasma flow is characterized
by a number density and by thermal and bulk velocities.

In the results presented in this paper we treat the lunar surface as an insulating surface. It means that if a
particle hits the surface it is accumulated in the first cell layer under the lunar surface, which is also a part of
the simulation box. After that the particle position is not changed during the simulation time, but its electric
charge contributes to the total charge number density and, consequently, to the electric potential.

Another highly important boundary condition is the boundary condition for particles at the solar wind
wall, i.e., at the front wall (the +X wall). First of all, if a particle hits the front wall it is removed from the
simulation. The most critical boundary condition controls how the solar wind particles are injected into the
simulation box to obtain a stationary solution where the electric field on the front face is zero. This is
ensured by the so-called density regulator, DR, which controls the density of the solar wind electrons that
are injected into the solar wind by monitoring the total electric charge within the simulation box, Q. The DR
increases or decreases the density of injected solar wind electrons if Q is positive or negative, respectively. In
such a way Q becomes closer to zero within the simulation box and, consequently, also the electric field near
the front wall becomes closer to zero (see equation (A3)). In the presented runs the average total charge
were calculated during 2 x 1073 s and the density of the solar wind electrons was increased or decreased by
0.5% if Q was positive or negative, respectively. The motivation and rationale of the developed DR method
is described in Appendix B.

2.3. Macroparticle Propagation and Accumulation

One of the crucial points of the HYBes model is the accumulation of mass and charge of the macroparticles
in the grid cells. In our model the shape and size of a macroparticle coincides with the local shape and size
of the grid cells and, as already mentioned, the accumulation process is just a geometrical intersection of a
macroparticle with the simulation lattice. If, for instance, such a macroparticle moves from the position 1 to
position 2, the total mass, electric charge, momentum, and kinetic energy in the accumulation process over
all grid cells remain unchanged and are conserved.

There are several types of macroparticle populations in the HYBes model: the Moon population, the solar
wind populations, and the dust populations. The Moon population includes photoelectrons, which are
emitted from the lunar surface, and the rate of emission is defined by the solar photon flux. The solar wind
populations include solar wind protons and solar wind electrons. All these particles are injected in the
simulation box from the front wall. The dust particle populations include lunar dust particles, and they are
injected into the simulation box as well as the photoelectrons, from the back wall of the simulation domain.

All macroparticles are injected in the simulation box with certain bulk velocity, thermal velocity, the
macroparticle weight w, mass m, and charge g. The rate of emission for each type of population is defined
by the different criteria and will be described in detail below in section 3.

2.4. Cell Structure and the Material Index
The HYBes model uses the rectangular simulation domain, which consists of a number of cells. An important
technique in the model is that physical properties of an individual cell can be controlled in a flexible manner.
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Each cell has some specific number,
so-called material index, which regulates
ojofojofofojofO0|0j0| 0000 the physical properties of the cell, including
olololololololololololololo how the cell treats particles. Figure 1 shows
an example of the simulation domain in
the 2-D model for the Moon base case. For
ojofojo|1|1 |1 111|000 00O this particular case we use four different
material indices:

ol ofo]|o]2 2| o0ofo0o]|o0]o
ololololal2 >0l 200l 0l o0lo 1. Cells with the material index 0: “Space”
cells. If a cell has a material index 0 the
oo o|o|of2 2 (0|0 0|lo]o . o
macroparticles can freely move inside the
ojofo0ojojo 2 21 00| 0]0] 0 cell under the influence of the existing
11| 2| 1 RS ol 1 111 forces. Those are cells above the surface.
2. Cells with the material index 1: “Emitting”
cells. If a cell has a material index 1
macroparticles are emitted from the
faces of the cell. The faces which emit
the macroparticles should touch the
Figure 1. lllustration of the material index in the HYBes model in “space” cells. The “emitting” cells can also
the analyzed Moon base type of landscape. All cells have an index, absorb a macroparticle if the particle hits

the material index, which determines how a cell treats a particle
which hits against the cell. Cells with the material index 0 are cells
above the surface and cells with the material indexes 1, 2, and 3
are surface cells. Some of the surface cells can emit photoelectrons photoelectrons.

(material index 1), some only absorb particles (material index 2), 3. Cells with the material index 2: “Absorbing”
and some cells deep inside the material cannot emit, absorb, or L
cells. If a cell has a material index 2

keep charged particles inside the cell (material index 3). See text K
macroparticles are absorbed by the cell. If

for details.
the particle hits the face of such cell, it is
stored at the cell center. Therefore, the electric charge and the mass of the cubic macroparticle cloud are
totally accumulated inside this cell without any contribution to the neighbors. The difference between the
cell with material indices 7 and 2 is that the cell with material index 7 can emit and absorb macroparticles,
while the cell with material index 2 can only absorb them. An example of this type of cell is a cell on the
surface in a shadow, which does not emit any particles from the surface.

the cell face. An example of this type of
cell is a cell on the surface which emits

4. Cells with the material index 3. “Inner” cells. If a cell has a material index 3 the macroparticles cannot move
inside such a cell. If after one time step dt, particles have moved inside such an “inner” cell, its position is
returned to the closest cell with material index 7 or 2. These cells are inside the lunar surface and in the
simulation mesh they are situated below cells which have material indices 1 or 2 (cf. Figure 1).

Note that by using this material index structure, we can build any type of surface landscape that consists of
cubic-shaped cells. The index provides also a possibility to implement easily different boundary conditions.
For example, a conducting surface model can be obtained by using a constant electric potential value at
all material indexes 1-3 when the Poisson equation is solved. The material index method is very flexible
because it allows us to specify new types of cells with different physical properties.

3. Simulation Results

In this section the developed model is used to study a plasma consisting of three charged particle
populations, including solar wind protons, solar wind electrons, and lunar photoelectrons. Furthermore,
this solution was used to study dust particles as test particles.

In the runs presented in this section the Moon is assumed to be in a nominal solar wind plasma

where the density of the undisturbed solar wind protons were n,(H") = 10 cm=3, the bulk velocity is
U,,,(H") =400 km s~', and the kinetic temperature T, (H*) = 10 eV. The bulk velocity of the solar wind elec-
trons was also set to Uy, (e7) = 400 km s~'. The thermal velocity of electrons, Uy, inerm(€7) (=4/ksTe- /M),
was 1.36 x 10% km s~', which corresponds to temperatures of about kT, = 10.5 eV. Consequently, the
Debye length, A, in the undisturbed solar wind was therefore 7.6 m (1, = \/(eokBT(e—))/(n(e—)eZ) ~
69\/(T(e—)[K])/(n(e—)[m—3]) m where k; is the Boltzmann constant, n(e™) is the density of electrons,
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Number densities for SZA =0 and T(e™) the temperature of electrons). The
velocity distribution function of the solar
Photoelectrons  —— wind protons and electrons was assumed
100 SW Electrons 7 to be a 3-D Maxwellian velocity distribution
- i Net Electrons function.
‘E SW lons
S, : Photoelectrons were modeled by a 3-D
‘i Maxwellian velocity distribution function
§ . with the thermal velocity of 621 km s~1,
3 10 — = which corresponds to a temperature of
3 : \\\» about k;T,- = 2.2 eV, and the photoelectron
E _ = e emission current density at the subsolar
= S e LT point was assumed to be 4.5 pA m=2, as
: : used in previous 1-D PIC simulations [see,
@ e.g., Poppe and Hordnyi, 2010]. In addition,
! 025 1 10 qoo celectrons above 6 eV were removed
Altitude, [m] from the velocity distribution because a
) ] ] Maxwellian velocity distribution produces
Electric potential for different SZA a high-energy tail, whereas the energy of
3 f S7A=0° the emitted photoelectron is limited by the
2 Séﬁf 152 _— energy of the absorbed solar photon.

: EZA; 320 The density of dust is derived by using the
> 1 i| SZA=60° —— 7 HYBes model in its test particle mode when
= SZA=TS ——— the electric potential is kept constant during
g 0 the run. This has to be done because the
% 1 time it takes to obtain a relatively stationary
S dust density distribution is substantially
§ P larger than a typical simulation time in the
w HYBes PIC simulation, as will be discussed

3 in detail later in section 3.3. For example,
the dust density profiles shown in this
-4 paper are derived att = 50 s after the

0.25 1 10 100 start of the continuous dust emission, while

Altitude, [m] the shown stationary 2-D PIC simulations
Figure 2. (a) The particle density of the three-particle populations ~ are obtained att = 1 ms. The velocity
in the HYBes simulation and the total electron density. (b) The distribution function of the emitted dust
electric potential at different SZA values. The simulation was particles is not known, and in the dust

performed by 1-D HYBes model. simulations presented in this paper the

velocity distribution function was assumed
to be a 3-D Maxwellian with the bulk velocity of 10 m s~! and the thermal velocity of 10 m s™'. The
emitted dust particles are assumed to have identical physical properties. The mass of a dust particle
was assumed to be my,, = 8.89 x 1079 kg (~ 5.3 X 10® m,) and the electric charge of the dust particle,
Gaust = +1.672 x 10717 C (~105 e). For comparison, if we assume that a dust particle is a homogeneous
spherical ball with a mass density of p,,, = 1.5 g cm~3, the radius of the dust particles would be about
r ~0.05pm (Mg, = pmgﬂ'l’?'). Moreover, the electric charge of a spherical dust particle corresponds to a
dust potential of about Vi & 3 V (Ggust = Vigust 47€o1)-

Itis also not known how dust particles can be lifted from the lunar surface and at which locations. Therefore,
two dust emission modes have been used in this study: (1) a homogeneous emission model where the flux
of emitted dust particle per horizontal area (i.e., per upward pointing face of a simulation cell on the surface)
was constant and (2) a point source model where dust particles were emitted only at a single simulation
cell face from the surface. The size of the 1-D PIC simulation box was0m < x < 100 mand —0.125m < y,
z < 0.125m,dl = 0.25 m and in the 2-D HYBes simulation0m < x <100 m, —40 m < y < 40 m and
—-0.25m <z < 0.25m,dl = 0.5m.The number of grid cells without ghost cells in the 1-D case was

n, X n, Xn, =400 X 1x 1and in the 2-D case 200 X 160 X 1. The simulation time step was 5.0 X 1078 5. The
simulation time step was chosen to be so small that the majority of electrons do not jump over a cell during
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Figure 3. (a) The electric potential above the lunar surface for
the antipyramid landscape. The vectors show the correspond-

ing electric field. (b) Electric potential along the three vertical
lines indicated in Figure 3a. (c) Normalized density of monosized

dust particles that are emitted uniformly from the surface. The

simulation was performed using the 2-D HYBes model.

the time step (0.25 m/5 x 1078 s = 5000 km/s;
0.5 m/5 x 1078 s = 10,000 km/s; thermal
velocity of solar wind electrons: 1360 km/s).
Typical number of macroparticles was about
(1-5) - 10° depending on simulations.

3.1. Debye Layer in 1-D

The Debye layer based on the 1-D HYBes
simulation is illustrated in Figure 2, which
gives the particle densities and the total
density of electrons above the Moon surface.
Note that the density of solar wind protons
is practically constant at all altitudes because
the change of the energy of protons within
the Debye sheath is small compared to their
initial energies. Near the surface, almost

all electrons are photoelectrons but the
solar-wind electrons start dominating the
electron population at higher altitudes near
the front wall. As in the previous 1-D PIC
simulations [Poppe and Hordnyi, 2010], the
total density of electrons exceeds, or is

very close to, the density of protons and,
therefore, the total charge above the surface
is negative. Note also that the density of
the solar wind electrons at the front face

is about 7.5 cm~3, that is, about 75% of

the density of the solar wind protons, and
the quasi-neutrality at the front wall is
obtained because of the about 25% density
contribution of photoelectrons.

Figure 2b shows the electric potential at
different SZA values. The SZA effect was
modeled by reducing the vertical velocity
of the solar wind protons by taking into
account the cosine dependency of the SZA:
Ug (HY)(SZA) = cos(SZA) x Uy, (H*). The
cosine dependency was also taken into
account in the photoelectron flux, which
was cos(SZA) x 4.5uA m~2. In the plot the
potential is normalized to be zero at the front
wall. Characteristic features of the solutions
are that increasing SZA results in smaller
potential values and that the local potential
minimum moves closer to the surface, in

a similar way as in the previous 1-D PIC
simulations [e.g., Poppe, 2011]. Note also
that the nonconstant electric potential near
the surface implies that the electric field

is nonzero there and that it points upward
near the surface, because the surface is
positively charged while the sum of the
electric charges collected above the surface
is negative.
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Figure 4. The electric potentials for the six landscapes analyzed by the HYBes model: (1) the pyramid (this case is
identical to the case illustrated in Figures 3a and 3b), (2) the antipyramid, (3) the crater, (4) the mountain, (5) the flat
surface (this panel, to some extent, represents the result of 1-D simulation (Figure 2a blue line)), and (6) the Moon base.
The vectors are electric field vectors. The simulation was performed using the 2-D HYBes model.

3.2. Debye Layer in 2-D

The 2-D HYBes was used to study Debye sheath regions for six different surfaces, i.e., for the so-called (1)
flat surface, (2) pyramid, (3) antipyramid, (4) mountain, (5) crater, and (6) Moon base surface reliefs. All cases
are modeled for SZA = 0°. The flat surface mimics the situation where the length scale of the landscape (L)
was much larger than the Debye length (4p), that is, when L > 4, The other landscape cases were used
to study the role of the Debye sheath. Therefore, their sizes were chosen to be comparable with the Debye
layer, i.e., the size scale of L ~ Ap. Figure 3 shows the key parameters in the antipyramid surface case. The
electric field points upward at every location on the surface and it is strongest at the deepest point of the
antipyramid. Three vertical lines show the position where the 1-D electric potential cuts are derived and
analyzed in Figure 3b. Note that the electric potentials above the surface at y=—30mand y=—15 m are
quite similar to those obtained for the 1-D case at SZA =0°. However, the electric potential above the center
of the antipyramid (y = 0 m) is much larger than those at the two other analyzed locations. Note also
that all three potential curves have a local minimum above the surface and, consequently, that the electric
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Figure 5. The distribution of homogeneously emitted dust above six analyzed landscapes. See Figure 4 for the
corresponding electric potential and electric field structures. All panels are normalized by the same maximum density
value. Note that densities contain temporal nonsymmetric features due to statistical fluctuations. The simulation was
performed using the 2-D HYBes model.

field points upward below the potential minimum point and downward above it. In Figure 3c the density
distribution of dust was derived by using the electric potential shown in Figure 3a and by using a
homogeneous dust emission model. The dust emission flux from the surface is not known and, therefore,
Figure 3c shows the dust densities divided by the maximum dust density. It should be noted, that the
normalized dust densities also give an indication about the probability for a single dust particle to occupy a
given location in the following manner: If there is a dust particle in the cell where the normalized density is
1, then the values of the normalized density at other cells give the probability to find a dust particle at those
cells. The dust density shows that a local dust maximum exists at about 65 m above the surface where the
surface is flat. At that altitude the upward motion of many dust particles changes to a downward motion
and the associated velocity decrease can be seen as increased density. Note that the dust particles emitted
from inside the antipyramid get a high upward directed acceleration due to the large electric field. They
are also accelerated horizontally by the horizontal component of the electric field near the antipyramid
(see electric field vectors in Figure 3a) resulting in low-density regions above the antipyramid.
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Figure 6. The normalized density of dust above four different landscapes when dust is emitted from a surface at various points. The rows from top to bottom
represent the antipyramid case, the crater case, the pyramid case, and the mountain case. Four columns from left to right show densities that resulted from four
source points on the surface aty = -25m,y =—11m, y = —6 m, and y = —0.25 m, respectively. See Figure 4 for the corresponding electric potential and electric
field structures. All panels are normalized by the same maximum density value. The simulation was performed using the 2-D HYBes model.

The summary of the electric potential at six landscape dust simulations can be seen in Figure 4. Every
landscape results in its own type of electric potential structure. In the pyramid landscape (Figure 4b)

the global potential minimum is located above the top of the pyramid. On the crater (Figure 4c) and

on the mountain (Figure 4d) landscapes, the global potential minimum is situated near the places where
the surface has vertical surfaces. The low-potential regions are formed where electrons can easily hit

into the vertical surfaces because of their high thermal velocity compared with the bulk velocity (electrons
are subsonic), while the protons form a beam-like downward moving flow (solar wind protons are highly
supersonic). Moreover, vertical faces do not emit photoelectrons at the SZA = 0° and, therefore, the
photoelectron emission does not make those surfaces positively charged. Both of these effects make
vertical surfaces more negatively charged compared with the horizontal surface on the flat surface
(Figure 4e) case. The most negative electric potentials can be found in the Moon base landscape (Figure 4f)
because there is a cavity at two sides of the landscape into which solar wind protons cannot easily enter
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but electrons can. Furthermore, inside the cavity, even the horizontal surface does not emit photoelectrons
because it is in the shadow.

The 2-D electric potential structures result in different dust density profiles above the landscapes, as can

be seen in Figure 5. The homogeneously emitted dust forms various large-scale density minimum and
maximum regions. Density enhancements also form narrow density stripes that are associated with the
corners in the landscape features, which separate positively charged surface regions from the negatively
charged surface regions (see electric potential in Figure 4). The dust densities shown in Figure 5 mimic the
situation of continuous interplanetary dust bombardment or when there is a meteoric shower, which results
in the emission of dust particles from a wide surface region. The maximum density regions in the figures are
related to the turning of the upward moving velocity to the downward moving velocity. Near the turning
point the velocity of dust particles becomes small and, consequently, their density becomes high.

Figure 6, instead, shows dust densities at cases where there is a localized dust emission on the surface.
This situation may mimic dust emission caused by robotic or human activity on the lunar surface or dust
emission caused by a single micrometeoroid impact. Four dust emission positions on the surface were
analyzed: (1) a pointaty = —25 m far away from the nonplanar surface region, (2) a pointaty = —11m
where the landscape feature starts, (3) a point aty = —6 m which is located on the side of the landscape,
and (4) a pointaty = —0.25 m which is close to the center of the landscape. Figure 6 indicates that a
localized dust emission results in highly different dust distributions depending on the landscape shape and
on where the source is located with respect to the landscape. In some cases a dust “fan” is formed (see, e.g.,
y = —11 min the antipyramid case), while in some other cases a relatively narrow, vertically tilted dust jet
(see, e.g.,y = —6 m in the crater case) can be seen. In several cases there is a local density maximum above
the source but not always because of the nonhomogeneous horizontal electric fields accelerating the dust
particles horizontally, i.e., away from the vertical to the source (see, e.g.,y = —11 m in the crater case).

3.3. Discussion

This paper describes details of the new electrostatic PIC code developed to study plasmas and electric fields
above different lunar landscapes. The applicability of the PIC code is not restricted to the lunar surface, and
it can be used equally well to study the near-surface plasma of an asteroid, Mercury, moons of giant planets,
or a nonactive or weak comet.

The model has been found to be robust and flexible to study various landscapes and physical properties of
the landscape. This is accomplished by developing suitable boundary conditions for fields and particles and
by introducing a method (the material index) to describe landscape features and properties of the surface.
In this paper 1-D and 2-D versions were used to study six different landscape features. The model can also
be used in 3-D, as implied by preliminary low-resolution test runs (figures not shown) but a good-resolution
3-D case requires substantially more computing resources than 1-D or 2-D cases.

Analysis of the six landscapes showed, that the near surface electric field is controlled by the landscape. For
a comparison, variations of the electric potential from point to point near a landscape can easily exceed
the variations that can be seen at different SZA values on flat surface cases (e.g., cf. Figures 2b and 3b). The
2-D electric potential distributions in turn was found to significantly affect dust density profiles both in

the case when there is a dust emission from the whole surface and when there is a localized dust source.

A practical implication of these results is that the landscape morphology has to be taken into account
when an appropriate site for a human or robotic action on the surface is planned.

In the future more detailed studies for the near-surface physics can be made for the HYBes by including
more charged particles, using non-Maxwellian velocity distribution function, analyzing various solar
illumination conditions and including plasma-dust interactions. For example, the photoelectron and solar
wind velocity distribution functions can be non-Maxwellian in the HYBes model. In this paper we assume
that all initial velocity distributions are 3-D Maxwellian distributions to make the result comparable with
previous published Debye sheath PIC simulations [Poppe and Hordnyi, 2010; Kallio et al., 2012]. In a more
rigorous modeling one should take into account the fact that the energy spectra of the solar radiation vary
with time depending on the solar activity and that the photoelectron yield is depending on the solar optical
spectrum. For example, it has been shown that extreme solar flare conditions can increase photoelectron
emission several fold [Sternovsky et al., 2008]. The energy distribution of electrons depends also strongly on
the chemical composition of the material from which the photoelectrons are emitted, such as its oxidation
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state [Grard and Tunaley, 1971]. In addition, a Maxwellian velocity distribution function is only the first-order
approximation for the solar wind protons and electrons. It should also be noted that lunar surface emits
also secondary ions and electrons, which also can be included into the HYBes in a manner similar to
photoelectrons.

Other simplification in the analyzed situation is that dust particles were modeled as charged particles
which do not contribute self-consistently to the total charge density of the plasma from which the
electric potential is derived. The charge and the mass of the dust particle are also assumed to be unchanged;
however, the charge may change due to photoelectron emission. In the present study dust particles are
modeled as test particles and there is no feedback from charged dust particles to the electric potential
and vice versa. It has, however, been argued that electrons stripped from dust particles, i.e., the so-called
“dust electrons,” may be a dominant source of electrons below 100 km [Stubbs et al., 2011]. Modeling the
dust in the HYBes would require determining the flux of dust particles released from the surface; however,
the emission rate is still unknown. The dust densities presented in Figures 3, 5, and 6 can, therefore, be
interpreted for the case where the charge density associated with dust particles is so small that they do
not affect the electric potential within the Debye layer. Such a fully self-consistent dusty plasma simulation
is, however, challenging because the time scale in the PIC simulation, determined by the electron plasma
frequency (~ 94/n(e~) kHz, where the electron density is given in cm™3), is much smaller than the typical
time of residence of a dust particle in the simulation box.

Note that the time for a charged particle reaching its equilibrium charge in a plasma can be very large
compared with the time for which a dust particle stays above the surface. The charging time by plasma
electrons has been approximated to be of the order of 4.1 x 103(T(e™) [eV]/50)'/2/(r [um] ng,, [cm™3]/5) s,
where r is the radius of a spherical dust particle [Nitter et al., 1992]. For example, in the case analyzed

bin the paper (n, = 10 cm=3, k,T(e™) = 10.5 eV) the charging times for 0.01, 0.1, 1, and 10 pm dust
particles would be about 94,000 s (26 h), 9400 s (2.6 h), 940 s (16 min), 94 s (1.6 min), respectively. These
times are much longer that it takes for a surface-emitting photoelectron to reach an equilibrium charging.
For example, the running time of the 2-D PIC simulations was 1 ms. However, a dust particle on the surface
bis already in a charge equilibrium state and, therefore, the time development of the charge of the dust
particle is anticipated to be controlled by the properties of the ambient plasma. These charging times are
substantially longer than the time it takes for HYBes to reach a stationary state in the cases analyzed in this
paper, suggesting that the assumption of an unchanged electric charge for the dust particles is a good
first-order approximation when dealing with dust particles of ~ 0.05 pm radius.

An additional simplification in the analyzed cases was that the magnetic field was assumed to be zero, i.e.,
the magnetic fields associated with the IMF or the Earth’s magnetosphere were missing. In addition the
Moon exhibits localized magnetic anomalies [e.g., Lin et al., 1998]. The new HYBes model can also include
time-independent, spatially variable magnetic fields, including the IMF or the lunar magnetic anomalies.
Recently, 3-D properties of plasmas and fields were studied with a hybrid model [Jarvinen et al., 2014] that
enabled separation of the flow of ions and electrons but which assumed a quasi-neutral plasma, that is, the
density of electrons is equal the density of protons. The hybrid model assumed a massless electron fluid
and, consequently, did not include fast electron plasma oscillations in contrast with a full PIC simulation,
which requires a small simulation time step and long computation times. In the future, embedding the
small spatial domain PIC simulation model inside a global or meso-spatial-scale model may increase the
applicability of a 2-D or a 3-D PIC simulation toward the study of larger spatial structures with reasonable
computer resources (see Kallio et al. [2012] for the discussion of different spatial scales in the lunar plasma
environment models].

3.4. Summary

A new 1-D/2-D/3-D electrostatic full kinetic particle-in-cell model, HYBes, has been developed to study
space plasma associated with the direct plasma-surface interaction. The model enables the analysis of the
properties of ions, electrons, and the electric field above various nonplanar surfaces. Simulation runs made
for different 2-D landscape features indicate that the detailed landscape morphology strongly affects the
electric field above the surface, in agreement with suggestions from previous PIC models. Different 2-D
electric fields were also found to result in highly different 2-D dust distributions above the surface. These
results show that the morphology of the landscape is critical to our understanding of the lunar near-surface
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plasma, and field and dust environments and that a 2-D or a 3-D PIC model is required to simulate these
near-surface regions.

Appendix A: Electric Potential on the Front and Back Walls

The minimum requirement for the HYBes model is that it gives the electric potential in a planar case, that is,
when parameters vary only with the altitude: p, = p,(x), ¢ = ¢d(x), E = (E,(x), 0,0). The HYBes assumes that
the charge density outside of the simulation box is zero, that is, a quasi-neutrality outside of the simulation

region. The electric field at the x,,;, and x,,,, faces can be obtained from Gauss'’s law by integration along the
X axis:
Pq Q
V- E= —e_o - EX(XmaX) - EX(Xmin) = —Feo (A1)
where dP (= Vmax = Ymin)@max — Zmin)) is the area of faces at x,;, and x,,,.- Q is the total electric charge in

the simulation box, which contains the electric charge above the surface (Q,,,c.) and the electric charge on
the lunar surface (Qg¢): Q = Qqpace + Quye- The 1-D density profile represents the real 3-D space collection of
infinite large electric charge planes where every plane of a width dx has a surface charge density of p,(x)dx.
Such surface charge results in a constant electric field on both sides of the plane such that the direction

of the electric field on the opposite side of the plane is opposite. Therefore, at the top and bottom faces
E,(Xmax) = —Ex(Xmin) applies. Combining of this to equation (A1) gives

Q

e (A2)

Ex(Xmax) = _Ex(Xmin) =

In the full 2-D or 3-D cases the result of the volume integration of equation (A2) can be written as follows:

<E,(Xay) > dP— < E,(Xi) > dI* = _Q (A3)
€o
where < E (X,.x) > and < E (X,) > are the average electric field on the x = X, and onthe x = x.,,

planes, respectively.

The HYBes simulation assumes that there is no electric field or charge density outside of the simulation box,
that is,

E, = 0;p,=0. (Ad)

According to Gauss's law, the required zero electric flux through the simulation box implies that the total
charge within the box is zero (Q = 0). Therefore, equation (A3) gets the form

< Ex(Xmax) >=-< Ex(Xmin) > (A5)
The HYBes uses equation (A5) and assumes that the electric field is constant on the x,,,, and x,,, faces,
thatis,
EXmax> ¥ 2) = < Ex(Xmay) >
Ex(Xmin’y’ Z) =< Ex(Xmin) > (A6)
where
< E (x )>=—<E(x-)>=——Q (A7)
X\ max X\ 'min 2€Odl2

It should be noted that equation (A6) becomes more and more accurate the farther away the x faces are
from the region where Q is nonzero, that is, the larger the simulation box is in the x direction.

Equations (A6) and (A7) form the boundary conditions for the fields at the upper and lower faces, and these
are used for the boundary conditions for the electric potential as follows:

_ __Q
#O) = 91 = 550
BN, = 1) = p(N, —2) — =2 (A8)

2dle,’
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Appendix B: Density Regulator Method

The most critical boundary condition in the HYBes controls how the solar wind particles are injected

into the simulation box. Before the density regulator, DR, method was implemented into HYBes, various
other boundary conditions were tested that all resulted in some unwanted effects, such as short- or
long-wavelength nonvanishing fluctuations or a plasma sheath near the front wall. The important feature in
the DR method is that it does not result in artificial plasma or field regions near the simulation boundaries
and, therefore, the result within the full simulation box can be used.

It is important to realize why the front wall boundary condition is challenging to see the rationale behind
the developed DR. The HYBes simulation tries to reach a stationary solution. Conservation of the electric
charge states that

% +V-j=0 (B1)
where p, and j are the total charge density and the electric current density, respectively. Note that
equation (B1) is valid even when new charged particles are generated inside the simulation box because
new charged particles, such as photoelectrons and corresponding positively charged ions on the surface,
originate from an atom or a molecule. Therefore, the amounts of negatively and positively charged particles
are equal and, consequently, they do not affect the total charge density p,.

Integration of equation (B1) over the volume of the simulation box states that in a stationary case the total
electric current into the simulation box should be zero. Because periodic boundary conditions are used in
the y and z directions and because particles are not moving through the bottom boundary, the total electric
current Ji (A) through the upper wall should be zero:

hot= X de=dy () + I (HI)+I, (P )=0 (82)
K
Here J,(e_,) and J,(H? ) are the total electric current through the upper wall associated with the solar wind
electrons and protons, respectively. The total electric current JX(Pﬁoon) is associated with all charged par-
ticles originating from the surface, P,\J—'Aoon, such as the photoelectrons, secondary electrons and ions, and
charged dust particles.

Another boundary condition is that we assume quasi-neutrality near the front wall, that is,

e-n(e,)=e-nH:)+q,-nP ) (B3)

w Moon

+

Moon- 1N the current

where e and g, are the positive unit charge and the electric charge of the particle P
simulation Pﬁloon includes only photoelectrons.

It is instructive to consider the consequences and challenges of particle boundary conditions in

equations (B2) and (B3) before we introduce the DR. Let us then assume a two-charged-particle population
plasma formed by the solar wind electrons and protons. Assume now a typical situation in the solar wind
where the bulk velocity of protons, U, (H*), is much larger than their thermal velocity and that, therefore, all
protons at the front wall move toward the surface. Assume also a typical situation in the solar wind that the
bulk velocity of electrons in the undisturbed solar wind, U,,,(€7), is much smaller than their thermal velocity.
This means that if the undisturbed velocity distribution function of electrons is f,(v), in the simulation only
downward moving electrons, v, < 0, move into the simulation box at the front wall.

The full velocity distribution at the front wall instead is a superposition of downward moving electrons and
upward moving electrons (v, > 0), which are reflected back from the electric potential (i.e., which move out
of the simulation box) with a velocity distribution function of fe'ef(v). Note that the conservation of energy
states that the speed of a reflected electron is equal to the speed of the initial electron but the direction

of the velocity is opposite. Therefore, the total velocity distribution of electrons at the front wall, fe‘°t(v), is
the superposition of the initial (half) Maxwellian velocity distribution and the reflected electrons formed by
those slow SW electrons which had their direction of velocity changed:

') = £,(v) + £ (v) (B4)
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Therefore, there is a reflection velocity, v,, and electrons with a velocity smaller than v, become reflected
back to the front wall. Formally this can be written as

fefW)y=f(-v), 0 < v <v,
feref(v) =0, v>v, (B5)

The value of v, depends on the maximum local potential minimum, ¢,,,;,, from the law of conservation of
energy is

T .2

Emevr = e¢min (B6)

when the gravitation is neglected. In a more rigorous analysis for a small potential drop and a high gravity
object, also the gravitation has to be taken into account.

The total electron distribution function fetOt can be derived from the boundary conditions, equations (B2)
and (B3), which in the two-population solar wind plasma are

—en,U(e7) +en(HHU,(HH) =0 (B7)
n, = n(H") (B8)

Combining the equations implies that the bulk velocity of electrons and ions are equal:
U, (e7) = U, (H") (B9)

Equation (B9) states that in the quasi-neutral solar wind, electrons and protons have the same bulk speed.
Within the simulation box the potential drop is of the order of a few eV for a typical solar wind plasma
[see, e.g., Poppe and Hordnyi, 2010]. Therefore, the velocity distribution of the solar wind protons can be
approximated to be unchanged within the simulation box and, consequently, the bulk velocity of the
protons to be equal the velocity of the solar wind:

U, (H") = U, (H" (B10)
Equations (B8) and (B3) give us the needed condition for the velocity distribution of electrons:
U, (e7) = U, (H*) = const. (B11)

Finally, equation (B11) can be used to derive the reflection velocity (v,) in equation (B4) analytically or
numerically in the following steps: (1) choose a small nonzero value for v,, (2) derive fff from equation (B5),
(3) derive f;°* from equation (B4), (4) calculate U,(e") at the front wall. If equation (B11) is not fulfilled

then increase the value v, until it is fulfilled. Note that v, can always be found because in the solar wind

U e) = U, (H?) < 0, but f, includes only downward moving electrons. Therefore, U, (e™) associated with
f, is smaller than U, (H*), and its value can be increased up to U,,(H*). The reflected electrons increase
the negative U(e™), until it is equal to U, (H*). Note also that when v, is known, one can also calculate the
minimum potential drop for equation (B6). At this stage only the information about the shape of the velocity
distribution function f, is used. The normalization of f, can be obtained from the quasi-neutrality condition
equation (B4), noting that a very good approximation for the n(H*) is the undisturbed density of solar
wind protons.

The importance of the boundary condition algorithm sketched above is that it makes it understandable
why one can always find a solution which fulfills both the quasi-neutrality and where the electric current
inside the simulation box is zero. It should, however, be noted that above we assumed that the velocity
distribution of protons was unchanged by the electric potential and, therefore, there were only two free
parameters (v, and a normalization constant for f;"t(v)) whose value could be determined by two scalar
equations describing the boundary conditions (equations (B7) and (B8)). In reality the situation is more
complicated because there are also charged particles of lunar origin and we do not know beforehand
how large is their contribution to the total electric charge and the electric current at the front face

(see equations (B2) and (B3)). The velocity distribution function of protons can be changed within the
Debye sheath. Therefore, the boundary conditions for particles cannot be derived in a general case with the
aforementioned algorithm without making the actual self-consistent simulation.
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In the HYBes model a new particle BC was created where it is linked to the field BC by modifying
automatically the density of the undisturbed solar wind distribution function f{°*. The density modification
affects the electric potential and the number of reflected SW electrons. The automatic density modification
by the DR is continued in the simulation run until the electric field near the solar wind face is zero, that is,
until the electric potential is constant near the solar wind. The constant electric potential also implies that
the plasma is quasi-neutral in that region. By this automatic regulation of the solar wind electron flux, a
stationary solution is obtained that fulfills simultaneously the requirements of quasi-neutrality and the
zero electric current through the front wall.

Technically, the DR is implemented as follows: it increases or decreases the density of injected solar wind
electrons if the total charge within the simulation box is positive or negative, respectively. In such a way the
total electric charge within the simulation box becomes closer to zero and, consequently, the electric field
near the front wall closer to zero. In such a way the number of backscattered solar wind electrons is changed
indirectly. The two control parameters in the DR are the time interval during which the total electric charge
inside the simulation box was derived, Atpg, and the density change factor, Anpg, which determines how
much the density of the solar wind electrons was increased or decreased at every Atpg. In the presented
runs DR was started after 1 ms of the beginning of the simulation, Atpg = 6.25 - 1076 s and Anpg was 0.5%.
In general, values of Atpg and Anpy are expected to depend on the simulated case, such as the size of the
simulation box and the input parameters.
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