Erratum: "Absolute beam monitor: A novel laboratory device for neutral beam calibration" [Rev. Sci. Instrum. 93, 093302 (2022)]

Cite as: Rev. Sci. Instrum. 93, 129902 (2022); doi: 10.1063/5.0133907 Submitted: 7 November 2022 • Accepted: 14 November 2022 • **Published Online: 6 December 2022**

Jonathan Gasser, De André Galli, De and Peter Wurz

AFFILIATIONS

Physics Institute, Space Research and Planetary Sciences, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland

a) Author to whom correspondence should be addressed: Jonathan.gasser@unibe.ch

https://doi.org/10.1063/5.0133907

In Sec. II A of the paper,1 we used ambiguous nomenclature for the detection efficiencies in the text preceding Eq. (2) and after Eq. (3). The text should read as follows:

"Each incident neutral atom has an a priori unknown probability μ_e for ejecting a secondary electron from the SS and an unknown probability μ_i of being itself detected subsequently by the stop detector. The probability of generating a coincidence count is thus, $\mu_{\rm c} = \mu_{\rm e} \cdot \mu_{\rm i}$.

The start, stop, and coincidence count rates (re, ri, rc), respectively, to be observed from the incoming neutral atoms at the rate $F_n = f_n \sigma_{ap}$ through the entrance aperture with the cross section σ_{ap} will then be [as given in Eq. (2)]. With the requirement that the background rates $(r_{e,0}, r_{i,0}, r_{c,0})$ of the three count rates are negligible, we obtain [Eq. (3)] and the coincidence detection efficiency for neutral atoms is $\varepsilon_n = \mu_c = \mu_e \mu_i$."

Furthermore, there is an error in Eqs. (4) and (5). The corrected equations are

$$f_{n} = \frac{(r_{e} - r_{e,0})(r_{i} - r_{i,0})}{\sigma_{ap} \cdot (r_{c} - r_{c,0})},$$
(4)

$$f_{n} = \frac{(c_{e} - c_{e,0})(c_{i} - c_{i,0})}{(c_{c} - c_{c,0})\sigma_{ap} t_{int}},$$
(5)

where t_{int} is the total integration time

REFERENCE

¹J. Gasser, A. Galli, and P. Wurz, "Absolute beam monitor: A novel laboratory device for neutral beam calibration," Rev. Sci. Instrum. 93, 093302 (2022).